Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 45, Issue 3–4, pp 196–201 | Cite as

Thermal stability of amorphous alloys Mg65Cu25Y10, Mg63Ni30Y7 after electrochemical hydrogen absorption

  • M. P. Savyak
Article

Abstract

Thin ribbons of the metallic glass Mg65Cu25Y10 and Mg63Ni30Y7 obtained by melt spinning were saturated with atomic hydrogen during electrochemical decomposition of water. The amount of absorbed hydrogen was as high as 4 mass% for the alloy Mg65Cu25Y10Hx and 1.5 mass% for the alloy Mg63Ni30Y7Hx. As the hydrogen content increases up to 3.6 mass%, the amorphous structure of the copper-containing alloy is transformed to a nanocrystalline structure with formation of magnesium and yttrium hydrides and also the intermetallic Cu2Mg at room temperature. The appearance of crystalline compounds during saturation with hydrogen leads to a decrease in the thermal stability of the amorphous alloy and a shift of the differential scanning calorimetry curves toward lower temperatures. In the presence of nickel, the thermal stability of the amorphous alloy Mg63Ni30Y7Hx increases with hydrogen saturation. After heating up to the crystallization temperature, the compounds Mg2NiH0.3 and YH2 appear.

Keywords

magnesium alloys amorphous structure hydrides thermal stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Gebert, U. Wolff, M. Savyak, et al., “Stability and electrochemical properties of Mg65Cu25Y10 metallic glass,” Mater. Sci. Forum, 377, 9–14 (2001).CrossRefGoogle Scholar
  2. 2.
    M. Savyak, S. Hirny, H.-D. Bauer, et al., “Electrochemical hydrogenation of Mg65Cu25Y10, ” J. Alloys and Comp., 364, 217–228 (2003).Google Scholar
  3. 3.
    M. P. Savyak, A. Gebert, and M. Uhlemann, “Effect of hydrogen on the amorphous structure of Mg65Cu25Y10 alloy with electrochemical saturation,” Poroshk. Metall., Nos. 9–10, 1–7 (2004).Google Scholar
  4. 4.
    A. Gebert, U. Wolff, A. John, et al., “Stability of the bulk glass-forming Mg65Cu25Y10 alloy in aqueous electrolytes,” Mater. Sci. Eng., A299, 125–135 (2001).Google Scholar
  5. 5.
    A. Gebert, K. Buchholz, A. Leohard, et al., “Investigations on the electrochemical behaviour of Zr-based bulk metallic glasses,” Mater. Sci. Eng., A267, No. 2, 294–300 (1999).Google Scholar
  6. 6.
    A. Zaluska, L. Zaluski, and J. O. Strom-Olsen, “Nanocrystalline magnesium for hydrogen storage, ” J. All. Comp., 288, 217–225 (1999).CrossRefGoogle Scholar
  7. 7.
    J. Eckert, “Massive amorphous metals,” Wissenschaftliche Zeitschrift der Technischen Universität Dresden, 46, No. 3, 86–90 (1997).Google Scholar
  8. 8.
    A. Inoue and T. Masumoto, “Mg-based amorphous alloys,” Mater. Sci. Eng., A173, 1 (1993).Google Scholar
  9. 9.
    T. Spassov and U. Köster, “Thermal stability and hydriding properties of nanocrystalline melt-spun Mg63Ni30Y7,” J. All. Comp., 279, 279–286 (1998).CrossRefGoogle Scholar
  10. 10.
    T. Spassov, P. Solsona, S. Surinach, and M. D. Baro, “Nanocrystallization in Mg83Ni17−xYx (x = 0, 7.5) amorphous alloys,” J. All. Comp., 345, 123–129 (2002).CrossRefGoogle Scholar
  11. 11.
    N. Ismail, M. Uhlemann, A. Gebert, and J. Eckert, “Hydrogenation and its effect on the crystallisation behaviour of Zr55Cu30Al10Ni5 metallic glass,” J. All. Comp., 298, 146 (2000).CrossRefGoogle Scholar
  12. 12.
    I. G. Konstanchuk, E. Yu. Ivanov, and V. V. Boldyrev, “Reaction with hydrogen of alloys and intermetallics obtained by mechanochemical methods,” Usp. Khim., 67, 7–75 (1998).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • M. P. Savyak
    • 1
  1. 1.Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKiev

Personalised recommendations