Powder Metallurgy and Metal Ceramics

, Volume 45, Issue 3–4, pp 129–135 | Cite as

Phase diagram of the Al2O3-ZrO2-Sm2O3 system. II. Liquidus surface

  • S. M. Lakiza
  • Z. O. Zaitseva
  • L. M. Lopato
Physicochemical Materials Research


A projection has been constructed for the liquidus surface on the plane of the concentration triangle for the Al2O3-ZrO2-Sm2O3 phase diagram. There are no ternary compounds, or appreciable regions of solid solutions based on the components and the binary compounds. The liquidus surface is formed by nine fields of primary phase crystallization. There are five four-phase nonvariant peritectic equilibria, as well as two four-phase nonvariant eutectic equilibria, and one three-phase nonvariant eutectic equilibrium. As the ZrO2 and SmAlO3 phases interact with other phases by a eutectic mechanism, it is possible to combine the unique properties of the T and F solid solutions based on ZrO2 with the properties of the other phases in the form of composites.


zirconium dioxide aluminum oxide samarium oxide interaction liquidus surface phase diagram 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. N. Lakiza, L. M. Lopato, and A. V. Shevchenko, “Interaction in the Al2O3-ZrO2-Y2O3 system,” Poroshk. Metall., Nos. 9–10, 46–51 (1994).Google Scholar
  2. 2.
    S. G. Tresvyatskii, V. I. Kushakovskii, and V. S. Belevantsev, “A study of the Al2O3-Sm2O3 and Al2O3-Gd2O3 systems,” Atom. Energiya, No. 3, 219–220 (1960).Google Scholar
  3. 3.
    P. P. Budnikov, V. I. Kushakovskii, and V. S. Belevantsev, “A study of the Gd2O3-Al2O3 and Sm2O3-Al2O3 systems,” Dokl. AN SSSR, 165, No. 5, 1076–1077 (1965).Google Scholar
  4. 4.
    M. Mizuno, T. Yamada, and T. Nogushi, “Phase diagram of the system Al2O3-Sm2O3 at high temperatures,” J. Ceram. Soc. Jap., 85, No. 8, 372–379 (1977).Google Scholar
  5. 5.
    P. Wu and A. D. Pelton, “Coupled thermodynamic — phase diagram assessment of the rare earth oxide-aluminum oxide binary systems,” J. Alloys Comp., No. 179, 259–287 (1992).Google Scholar
  6. 6.
    Y. Peres and M. Jorba, “ZrO2-rare earth oxide systems,” Ann. Chim., 7, No. 7–8, 479–511 (1962).Google Scholar
  7. 7.
    A. Rouanet and M. Foex, “Etude a haute temperature des systémes formés par la zircone avec les sesquioxydes de samarium et de gadolinium,” C. R. Acad. Sci. Paris, Ser. C, 267, 873–876 (1968).Google Scholar
  8. 8.
    A. Rouanet, “Contribution a l’étude des systemes zircone-oxydes des lanthanides au voisinage de la fusion,” Rev. Int. Hautes Temp. Refract., 8, No. 2, 161–180 (1977).Google Scholar
  9. 9.
    S. M. Lakiza, V. P. Red’ko, and L. M. Lopato, “Phase diagram of the Al2O3-ZrO2-Sm2O3-system. I. Triangulation and isothermal sections of the phase diagram at 1250 and 1650°C,” Poroshk. Metall., Nos. 11–12, 40–48 (2005).Google Scholar
  10. 10.
    L. M. Lopato, A. V. Shevchenko, and A. E. Kushchevskii, “Studies on highly refractive oxide systems,” Poroshk. Metall., No. 1, 88–92 (1972).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • S. M. Lakiza
    • 1
  • Z. O. Zaitseva
    • 1
  • L. M. Lopato
    • 1
  1. 1.Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKiev

Personalised recommendations