Powder Metallurgy and Metal Ceramics

, Volume 44, Issue 9–10, pp 455–462 | Cite as

Phase Equilibria in the Melting - Crystallization Region for Alloys in the Ti - TiNi - Sc0.53Ni0.47 - Sc Subsystem

  • T. Ya. Velikanova
  • N. Yu. Krendelsberger
  • O. L. Semenova
Physicochemical Materials Research


Physicochemical analysis methods have been applied to the phase equilibria in the Ti - TiNi - Sc0.53Ni0.47 - Sc subsystem of the Ti - Ni - Sc ternary system. No ternary compounds are found in the subsystem. Isomorphous phases based on Ti2Ni and Sc0.72Ni0.28 form continuous series of solid solutions (η) at subsolidus temperatures, as do the equiatomic compounds TiNi and Sc0.53Ni0.47. The crystallization of the η phase in the ternary system is incongruent, as in the binary systems Ti - Ni and Sc - Ni. The solidus surface for the Ti - TiNi - Sc0.53Ni0.47 - Sc subsystem has a nonvariant four-phase reaction of transition type at 830 °C. The compositions of the alloys that take part in it extend to the Sc - Ni side.


phase equilibrium melting crystallization Ti - Ni - Sc system titanium nickel scandium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. L. Semenova, N. Yu. Rusets'ka, T. Ya. Velikanova, and V. M. Vereshchak, “Reactions in the crystallization of alloys in the Ti-Ni-Sc system in the TiNi-Ni-ScNi region,” Poroshk. Metall., Nos. 7–8, 134–140 (1996).Google Scholar
  2. 2.
    E. L. Semenova, N. Yu. Rusetskaya, and V. M. Petyukh, “Projection of the solidus surface for the Sc-Ti-Ni system in the region of TiNi-Ni-ScNi alloys,” Poroshk. Metall., Nos. 11–12, 37–44 (1996).Google Scholar
  3. 3.
    T. B. Massalski (ed.), Binary Alloys Phase Diagrams, Vol. 1, 2, ASM, Metals Park, OH (1986).Google Scholar
  4. 4.
    E. M. Savitskii and G. S. Brukhanova, “The phase diagram for alloys in the titanium-scandium system,” Neorgan. Khimiya, 6, 1253–1255 (1961).Google Scholar
  5. 5.
    B. J. Beaudry and A. H. Daane, “Sc-Ti system and allotropy of Sc,” Trans. Metal. Soc. AIME, 224, 770–775 (1962).Google Scholar
  6. 6.
    V. M. Danilenko, N. Yu. Rusetskaya, E. L. Semenova, and A. B. Yagodkin, “Thermodynamic modeling of the Sc-Ti system,” Poroshk. Metall., Nos. 7–8, 63–68 (1999).Google Scholar
  7. 7.
    E. L. Semenova and N. Yu. Rusetskaya, “The Sc-Ni system,” J. Alloys Comp., 262–263, 258–262 (1997).Google Scholar
  8. 8.
    Inorganic-Material Encyclopedia [in Russian], Nauk. Dumka, Kiev (1977).Google Scholar
  9. 9.
    K. A. Gschneider Jr., “Physical properties of the rare earth metals,” Bull. Alloy Phase Diagr., 11, No.3, 216–223 (1990).Google Scholar
  10. 10.
    P. Villars and L. D. Calvert, Pearson Handbook of Crystallographic Data for Intermetallic Phases, Vols. 1–4, ASM, Metal Park, OH (1991).Google Scholar
  11. 11.
    E. L. Semenova and Yu. V. Kudryavtsev, “Structural phase transformation and shape memory effect in ZrRh and ZrIr,” J. Alloys Comp., 203, 165–168 (1994).CrossRefGoogle Scholar
  12. 12.
    V. N. Eremenko, E. L. Semenova, and L. A. Tret'yachenko, “The liquidus surface and crystallization scheme for alloys in the Ti-Ni-Zr system containing up to 50 at.% Ni,” Poroshk. Metall., No. 8, 49–54 (1991).Google Scholar
  13. 13.
    O. L. Semenova and L. O. Tret'yachenko, “The solidus surface in the Ti-Ni-Hf system in the region Ti-TiNi-HfNi-Hf,” Poroshk. Metall., Nos. 7–8, 119–131 (2001).Google Scholar
  14. 14.
    M. Yu. Teslyuk, Metal Compounds with Laves Phase Structures [in Russian], Nauka, Moscow (1969).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • T. Ya. Velikanova
    • 1
  • N. Yu. Krendelsberger
    • 1
  • O. L. Semenova
    • 1
  1. 1.Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations