MpDGK2, a Novel Diacylglycerol Kinase from Malus prunifolia, Confers Drought Stress Tolerance in Transgenic Arabidopsis


Phospholipase D (PLD)– and phospholipase C (PLC)/diacylglycerol kinase (DGK)–coupled pathways produce phosphatidic acid (PA), which is an important signal transduction process in animal and plant cells. DGK is the second largest PA-generating factor after PLD in both biotic and abiotic stress responses, which could phosphorylate diacylglycerol (DG) to form PA. Here, we assessed the biological role of MpDGK2, a DGK gene isolated from Malus prunifolia that is upregulated by water deficit, oxidation, or exogenous abscisic acid. Its heterotopic expression is helpful to improve the drought resistance of transgenic Arabidopsis thaliana. Changes in electrolyte leakage, chlorophyll concentration, and malondialdehyde accumulation showed a positive response. MpDGK2 had effect on stomatal closure under water withholding condition. In addition, under stress conditions, MpDGK2 significantly regulates the accumulation of hydrogen peroxide (H2O2), which is manifested in the fluctuation of H2O2 concentration and the change of antioxidant enzyme activity. In summary, these results indicate that MpDGK2 affects the growth and tolerance of Arabidopsis under drought stress. Part of its function may be due to its effects on stomatal behavior and reactive oxygen species accumulation, thereby improving drought tolerance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5



abscisic acid


ascorbate peroxidase






diacylglycerol kinase

H2O2 :

hydrogen peroxide




open reading frame


phosphatidic acid


phospholipase C


phospholipase D






quantitative real-time PCR


reactive oxygen species


scanning electron microscopy


  1. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    CAS  Article  Google Scholar 

  2. Arisz SA, Testerink C, Munnik T (2009) Plant PA signaling via diacylglycerol kinase. Biochim Biophys Acta 1791:869–875

    CAS  Article  Google Scholar 

  3. Botton A, Eccher G, Forcato C, Ferrarini A, Begheldo M, Zermiani M, Moscatello S, Battistelli A, Velasco R, Ruperti B, Ramina A (2011) Signaling pathways mediating the induction of apple fruitlet abscission. Plant Physiol 155:185–208

    CAS  Article  Google Scholar 

  4. Chance B, Maehly A (1955) Assay of catalases and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  5. Clauw P, Coppens F, De Beuf K, Dhondt S, Van Daele T, Maleux K, Storme V, Clement L, Gonzalez N, Inzé D (2015) Leaf responses to mild drought stress in natural variants of Arabidopsis. Plant Physiol 167:800–816

    CAS  Article  Google Scholar 

  6. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    CAS  Article  Google Scholar 

  7. Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    CAS  Article  Google Scholar 

  8. Dias FV, Serrazina S, Vitorino M, Marchese D, Heilmann I, Godinho M, Rodrigues M, Malhó R (2019) A role for diacylglycerol kinase 4 in signaling crosstalk during Arabidopsis pollen tube growth. New Phytol.

  9. Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    CAS  Article  Google Scholar 

  10. Escobar-Sepúlveda HF, Trejo-Téllez LI, PérezRodríguez P, Hidalgo-Contreras JV, Gómez-Merino FC (2017) Diacylglycerol kinases are widespread in higher plants and display inducible gene expression in response to beneficial elements, metal, and metalloid ions. Front Plant Sci 8:129

    Article  Google Scholar 

  11. Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci U S A 98:11444–11449

    CAS  Article  Google Scholar 

  12. Gomez-Merino FC, Brearley CA, Ornatowska M, Abdel-Haliem ME, Zanor MI, Mueller-Roeber B (2004) AtDGK2, a novel diacylglycerol kinase from Arabidopsis thaliana, phosphorylates 1-stearoyl-2-arachidonoyl-sn-glycerol and 1,2-dioleoylsnglycerol and exhibits cold-inducible gene expression. J Biol Chem 279:8230–8241

    CAS  Article  Google Scholar 

  13. Gomez-Merino FC, Arana-Ceballos FA, Trejo-Tellez LI, Skirycz A, Brearley CA, Dormann P, Mueller-Roeber B (2005) Arabidopsis AtDGK7, the smallest member of plant diacylglycerol kinases (DGKs), displays unique biochemical features and saturates at low substrate concentration: the DGK inhibitor R59022 differentially affects AtDGK2 and AtDGK7 activity in vitro and alters plant growth and development. J Biol Chem 280:34888–34899

    CAS  Article  Google Scholar 

  14. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    CAS  Article  Google Scholar 

  15. Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908

    CAS  Article  Google Scholar 

  16. Hummer KE, Janick J (2009) Rosaceae: taxonomy, economic importance, genomics. In: Folta K, Gardiner S (eds) Genetics and genomics of Rosaceae. Springer, New York, pp 1–17

    Google Scholar 

  17. Katagiri T, Mizoguchi T, Shinozaki K (1996) Molecular cloning of a cDNA encoding diacylglycerol kinase (DGK) in Arabidopsis thaliana. Plant Mol Biol 30:647–653

    CAS  Article  Google Scholar 

  18. Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175

    CAS  Article  Google Scholar 

  19. Lee SC, Lim CW, Lan W, He K, Luan S (2013) ABA signaling in guard cells entails a dynamic protein-protein interaction relay from the PYL-RCAR family receptors to ion channels. Mol Plant 6:528–538

    CAS  Article  Google Scholar 

  20. Li YL, Tan YX, Shao Y, Li MJ, Ma FW (2015) Comprehensive genomic analysis and expression profiling of diacylglycerol kinase gene family in Malus prunifolia (Willd.) Borkh. Gene 561:225–234

    CAS  Article  Google Scholar 

  21. Lichtenthaler K, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

    CAS  Article  Google Scholar 

  22. Livak K, Schmittgen T (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2-△△CT method. Methods 25:402–408

    CAS  Article  Google Scholar 

  23. Ma QQ, Gabelli SB, Raben DM (2019) Diacylglycerol kinases: relationship to other lipid kinases. Adv Biol Regul 71:104–110

    CAS  Article  Google Scholar 

  24. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    CAS  Article  Google Scholar 

  25. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    CAS  Article  Google Scholar 

  26. Munnik T, Testerink C (2009) Plant phospholipid signaling — ‘in a nutshell’. J Lipid Res 50:260–265

    Article  Google Scholar 

  27. Munnik T, Vermeer JE (2010) Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant Cell Environ 33:655–669

    CAS  Article  Google Scholar 

  28. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  29. Patterson BD, MacRae EA, Ferguson IB (1984) Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal Biochem 139:487–492

    CAS  Article  Google Scholar 

  30. Tan YX, Qin Y, Li YL, Li MJ, Ma FW (2014) Overexpression of MpGR-RBP1, a glycine-rich RNA-binding protein gene from Malus prunifolia (Willd.) Borkh., confers salt stress tolerance and protects against oxidative stress in Arabidopsis. Plant Cell Tissue Organ Cult 119:635–646

    CAS  Article  Google Scholar 

  31. Tan YX, Yang YL, Li C, Liang BW, Li MJ, Ma FW (2017a) Overexpression of MpCYS4, a phytocystatin gene from Malus prunifolia (Willd.) Borkh., delays natural and stress-induced leaf senescence in apple. Plant Physiol Biochem 115:219–228

    CAS  Article  Google Scholar 

  32. Tan YX, Li MJ, Yang YL, Sun X, Wang N, Liang BW, Ma F (2017b) Overexpression of MpCYS4, a phytocystatin gene from Malus prunifolia (Willd.) Borkh., enhances stomatal closure to confer drought tolerance in transgenic Arabidopsis and apple. Front. Plant Sci 8:33

    Google Scholar 

  33. Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10:368–375

    CAS  Article  Google Scholar 

  34. Testerink C, Munnik T (2011) Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. J Eep Bot 62:2349–2361

    CAS  Article  Google Scholar 

  35. Topham MK, Prescott SM (2002) Diacylglycerol kinase: regulation and signaling roles. Thromb Haemost 88:912–918

    CAS  Article  Google Scholar 

  36. van Wees SCM, van Schooten B, Vermeer JEM, van der Ent S, Haring MA, Munnik T (2008) DGK5 is required for SA responsiveness and disease resistance in Arabidopsis. Dissecting Arabidopsis phospholipid signaling using reverse genetics. pp 51–78

  37. Wang X, Su Y, Liu Y, Kim SC, Fanella B (2014) Phosphatidic acid as lipid messengerand growth regulators in plants. In: Wang X (ed) Phospholipases in plant signaling. Springer, Berlin, pp 69–92

    Google Scholar 

  38. Weigel D, Glazebrook J (2002) Arabidopsis: a laboratory manual. Springer, New York, pp 24–36

    Google Scholar 

  39. Xie Y, Mao Y, Zhang W, Lai D, Wang Q, Shen W (2014) Reactive oxygen species-dependent nitric oxide production contributes to hydrogen-promoted stomatal closure in Arabidopsis. Plant Physiol 165:759–773

    CAS  Article  Google Scholar 

  40. Zonia L, Munnik T (2004) Osmotically induced cell swelling versus cell shrinking elicits specific changes in phospholipid signals in tobacco pollen tubes. Plant Physiol 134:813–823

    CAS  Article  Google Scholar 

Download references


The authors are grateful to Mr. Zhengwei Ma for the management of the potted apple plants.


This work was financially supported by the National Natural Science Foundation of China (31572108).

Author information




Y. X. Tan performed and analyzed most of the experiments in this study, with assistance from L. Wang. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yanxiao Tan.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Message

MpDGK2 affects the growth and tolerance of drought-stressed Arabidopsis plants. Its function may be due, in part, to its influence on stomatal behavior and H2O2 homeostasis to drought tolerance.

Electronic Supplementary Material


(DOC 14 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tan, Y., Wang, L. MpDGK2, a Novel Diacylglycerol Kinase from Malus prunifolia, Confers Drought Stress Tolerance in Transgenic Arabidopsis. Plant Mol Biol Rep 38, 452–460 (2020).

Download citation


  • Diacylglycerol kinase gene
  • Drought stress
  • Hydrogen peroxide
  • Malus prunifolia
  • Stomatal response