Skip to main content
Log in

Over-Expression of Masson Pine PmPT1 Gene in Transgenic Tobacco Confers Tolerance Enhancement to Pi Deficiency by Ameliorating P Level and the Antioxidants

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Previously, we cloned the full sequence of masson pine (Pinus massoniana) phosphate transporter gene (PmPT1) from a phosphorus (Pi) deficiency tolerant strain. To further verify whether PmPT1 presumably function in angiosperms, i.e. tobacco, as well as to generate the new germplasm with high tolerance to Pi deficiency, currently, this gene was transferred into tobacco (Nicotiana tabacum) through Agrobacterium-mediated method. PmPT1 chiefly expressed in the roots of the transgenic plants, and considerably promoted the expression of two endogenous phosphate transporter genes of tobacco (NtPT1 and NtPT2) irrespectively of Pi status. Under low Pi conditions, the total P contents of the roots and shoots increased by 33.3% and 25.5%, respectively in L7, and by 30.7% and 23.9%, respectively in L18 in comparison with those of the wild type (WT). Also, the inorganic phosphorus (Pi) content of whole plants in L7 and L18 increased by 42.9% and 42.3%, respectively compared to the WT. The dry weight, contents of chlorophyll, soluble sugar and soluble protein, as well as the activities of peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) were significantly elevated, conversely the MDA accumulation was obviously decreased in transgenic lines compared to the WT. Therefore, PmPT1, a phosphate transporter gene of Pht1 family from masson pine might function in tobacco and two overexpressed-PmPT1 transgenic lines substantially enhanced the tolerance of the transgenic tobacco to low-P stress, which was at least chiefly ascribed to the improvement of P accumulation and oxidant alleviation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Acknowledgements

The project was supported by grants from National Key R & D Plan, P. R. China (2017YFD060030304), the Provincial Fundation of Guizhou Province, P. R. China (2019-1014), as well as the Opening Foundation of Key Laboratory of Educational Ministry (2018-474).

Author information

Authors and Affiliations

Authors

Contributions

TZ, YH, XPW designed the experiments. TZ, YH performed the experiments. TZ, YH, XPW computed, analyzed data. TZ, YH, XPW wrote the paper. All authors read and approved the manuscript.

Corresponding author

Correspondence to XiaoPeng Wen.

Ethics declarations

Conflict of Interest

The authors declared that no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key message

A masson pine phosphate transporter gene (PmPT1) was further transferred into tobacco using the Agrobacterium-mediated method. The transgenic plantlets were able to exhibit confers tolerance enhancement to Pi deficiency, which was at least chiefly ascribed to the improvement of expression of phosphate transporter genes, P accumulation and oxidant alleviation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Hong, Y. & Wen, X. Over-Expression of Masson Pine PmPT1 Gene in Transgenic Tobacco Confers Tolerance Enhancement to Pi Deficiency by Ameliorating P Level and the Antioxidants. Plant Mol Biol Rep 38, 238–249 (2020). https://doi.org/10.1007/s11105-019-01170-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-019-01170-5

Keywords

Navigation