Skip to main content
Log in

Early Changes in S-Nitrosoproteome in Soybean Seedlings Under Flooding Stress

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The shift from aerobic to anaerobic respiration is crucial for soybean response to flooding stress; however, the regulatory mechanism in action at the initial stage of flooding stress has not been fully elucidated. To identify this mechanism in soybean, proteomic analysis of S-nitrosylated proteins was performed with emphasis on nitric oxide (NO)-mediated regulation in soybean seedlings. Removal of NO by addition of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) partially restored seedling growth. After 3, 9, and 24 h of flooding stress, the S-nitrosylation status of 364, 188, and 186 proteins was altered relative to the corresponding status before flooding, respectively. Abundance of S-nitrosylated forms of 2, 186, and 162 proteins differed between the untreated control and flooded soybean plants after 3, 9, and 24 h of flooding stress, respectively. After flooding for 3 h, development, stress, and glycolysis/fermentation categories were identified as the top categories including proteins for which abundance of S-nitrosylated forms increased. Visualization of changes in S-nitrosylation profile by pathway mapping indicated a characteristic pattern in glycolysis/fermentation. Western blot analysis confirmed that S-nitrosylated status of alcohol dehydrogenase increased with flooding. These results suggest that S-nitrosylation comprises rapid molecular processes that change the abundance of the active form of alcohol dehydrogenase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PTM:

Post-translational modification

NO:

Nitric oxide

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

ADH:

Alcohol dehydrogenase

cPTIO:

2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide

LC:

Liquid chromatography

MS:

Mass spectrometry

References

  • Abat JK, Deswal R (2009) Differential modulation of S-nitrosoproteome of Brassica juncea by low temperature: change in S-nitrosylation of Rubisco is responsible for the inactivation of its carboxylase activity. Proteomics 9:4368–4380

    Article  CAS  Google Scholar 

  • Agrawal GK, Rakwal R, Jwa NS, Agrawal VP (2002) Characterization of a novel rice gene OsATX and modulation of its expression by components of the stress signalling pathways. Physiol Plant 116:87–95

    Article  CAS  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Deckert J, Rucińska-Sobkowiak R, Gzyl J, Pawlak-Sprada S, Abramowski D, Jelonek T, Gwóźdź EA (2012) Nitric oxide implication in cadmium-induced programmed cell death in roots and signaling response of yellow lupine plants. Plant Physiol Biochem 58:124–134

    Article  CAS  Google Scholar 

  • Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24

    Article  CAS  Google Scholar 

  • Benhar M, Forrester MT, Stamler JS (2009) Protein denitrosylation: enzymatic mechanisms and cellular functions. Nat Rev Mol Cell Biol 10:721–732

    Article  CAS  Google Scholar 

  • Bokszczanin KL, Solanaceae Pollen Thermotolerance Initial Training Network (SPOT-ITN) Consortium, Fragkostefanakis S (2013) Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Front Plant Sci 4:315

    Article  Google Scholar 

  • Camejo D, Romero-Puertas Mdel C, Rodríguez-Serrano M, Sandalio LM, Lázaro JJ, Jiménez A, Sevilla F (2013) Salinity-induced changes in S-nitrosylation of pea mitochondrial proteins. J Proteome 79:87–99

    Article  CAS  Google Scholar 

  • Camejo D, Ortiz-Espín A, Lázaro JJ, Romero-Puertas MC, Lázaro-Payo A, Sevilla F, Jiménez A (2015) Functional and structural changes in plant mitochondrial PrxII F caused by NO. J Proteome 119:112–125

    Article  CAS  Google Scholar 

  • Cheng T, Chen J, Ef AA, Wang P, Wang G, Hu X, Shi J (2015) Quantitative proteomics analysis reveals that S-nitrosoglutathione reductase (GSNOR) and nitric oxide signaling enhance poplar defense against chilling stress. Planta 242:1361–1390

    Article  CAS  Google Scholar 

  • Corpas FJ, Barroso JB (2014) Peroxynitrite (ONOO-) is endogenously produced in arabidopsis peroxisomes and is overproduced under cadmium stress. Ann Bot 113:87–96

    Article  CAS  Google Scholar 

  • Floryszak-Wieczorek J, Arasimowicz M, Milczarek G, Jelen H, Jackowiak H (2007) Only an early nitric oxide burst and the following wave of secondary nitric oxide generation enhanced effective defence responses of pelargonium to a necrotrophic pathogen. New Phytol 175:718–730

    Article  CAS  Google Scholar 

  • Freschi L (2013) Nitric oxide and phytohormone interactions: current status and perspectives. Front Plant Sci 4:398

    Article  Google Scholar 

  • Gadelha CG, Miranda RS, Alencar NL, Costa JH, Prisco JT, Gomes-Filho E (2017) Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation. J Plant Physiol 212:69–79

    Article  CAS  Google Scholar 

  • Gergel D, Cederbaum AI (1996) Inhibition of the catalytic activity of alcohol dehydrogenase by nitric oxide is associated with S nitrosylation and the release of zinc. Biochemistry 35:16186–16194

    Article  CAS  Google Scholar 

  • Giustarini D, Dalle-Donne I, Colombo R, Milzani A, Rossi R (2008) Is ascorbate able to reduce disulfide bridges? A cautionary note. Nitric Oxide 19:252–258

    Article  CAS  Google Scholar 

  • Hashiguchi A, Sakata K, Komatsu S (2009) Proteome analysis of early-stage soybean seedlings under flooding stress. J Proteome Res 8:2058–2069

    Article  CAS  Google Scholar 

  • Höög JO, Ostberg LJ (2011) Mammalian alcohol dehydrogenases—a comparative investigation at gene and protein levels. Chem Biol Interact 191:2–7

    Article  Google Scholar 

  • Hossain MA, Bhattacharjee S, Armin SM, Qian P, Xin W, Li HY, Burritt DJ, Fujita M, Tran LS (2015) Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Front Plant Sci 6:420

    PubMed  PubMed Central  Google Scholar 

  • Jaffrey SR, Snyder SH (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001:pl1

    CAS  PubMed  Google Scholar 

  • Kissoudis C, van de Wiel C, Visser RG, van der Linden G (2014) Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Front Plant Sci 5:207

    Article  Google Scholar 

  • Komatsu S, Deschamps T, Hiraga S, Kato M, Chiba M, Hashiguchi A, Tougou M, Shimamura S, Yasue H (2011a) Characterization of a novel flooding stress-responsive alcohol dehydrogenase expressed in soybean roots. Plant Mol Biol 77:309–322

    Article  CAS  Google Scholar 

  • Komatsu S, Yamamoto A, Nakamura T, Nouri MZ, Nanjo Y, Nishizawa K, Furukawa K (2011b) Comprehensive analysis of mitochondria in roots and hypocotyls of soybean under flooding stress using proteomics and metabolomics techniques. J Proteome Res 10:3993–4004

    Article  CAS  Google Scholar 

  • Komatsu S, Han C, Nanjo Y, Altaf-Un-Nahar M, Wang K, He D, Yang P (2013) Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding. J Proteome Res 12:4769–4784

    Article  CAS  Google Scholar 

  • Komatsu S, Tougou M, Nanjo Y (2015) Proteomic techniques and management of flooding tolerance in soybean. J Proteome Res 14:3768–3778

    Article  CAS  Google Scholar 

  • Li F, Sonveaux P, Rabbani ZN, Liu S, Yan B, Huang Q, Vujaskovic Z, Dewhirst MW, Li CY (2007) Regulation of HIF-1alpha stability through S-nitrosylation. Mol Cell 26:63–74

    Article  Google Scholar 

  • Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930

    Article  CAS  Google Scholar 

  • Ma Z, Marsolais F, Bykova NV, Igamberdiev AU (2016) Nitric oxide and reactive oxygen species mediate metabolic changes in barley seed embryo during germination. Front Plant Sci 7:138

    PubMed  PubMed Central  Google Scholar 

  • Nanjo Y, Skultety L, Ashraf Y, Komatsu S (2010) Comparative proteomic analysis of early-stage soybean seedlings responses to flooding by using gel and gel-free techniques. J Proteome Res 9:3989–4002

    Article  CAS  Google Scholar 

  • Nanjo Y, Skultety L, Uváčková L, Klubicová K, Hajduch M, Komatsu S (2012) Mass spectrometry-based analysis of proteomic changes in the root tips of flooded soybean seedlings. J Proteome Res 11:372–385

  • Paige JS, Xu G, Stancevic B, Jaffrey SR (2008) Nitrosothiol reactivity profiling identifies S-nitrosylated proteins with unexpected stability. Chem Biol 15:1307–1316

    Article  CAS  Google Scholar 

  • Santa-Cruz DM, Pacienza NA, Zilli CG, Tomaro ML, Balestrasse KB, Yannarelli GG (2014) Nitric oxide induced specific isoforms of antioxidant enzymes in soybean leaves subjected to enhanced ultraviolet-B radiation. J Photochem Photobiol B Biol 141:202–209

    Article  CAS  Google Scholar 

  • Scott HD, DeAngulo J, Daniel MB, Wood LS (1988) Flood duration effects on soybean growth and yield. Agron J 81:631–636

    Article  Google Scholar 

  • Shimoda Y, Nagata M, Suzuki A, Abe M, Sato S, Kato T, Tabata S, Higashi S, Uchiumi T (2005) Symbiotic rhizobium and nitric oxide induce gene expression of non-symbiotic hemoglobin in Lotus japonicus. Plant Cell Physiol 46:99–107

    Article  CAS  Google Scholar 

  • Tougou M, Hashiguchi A, Yukawa K, Nanjo Y, Hiraga S, Nakamura T, Nishizawa K, Komatsu S (2012) Responses to flooding stress in soybean seedlings with the alcohol dehydrogenase transgene. Plant Biotech 29:301–310

    Article  CAS  Google Scholar 

  • Usadel B, Nagel A, Thimm O, Redestig H, Blaesing OE, Palacios-Rojas N, Selbig J, Hannemann J, Piques MC, Steinhauser D, Scheible WR, Gibon Y, Morcuende R, Weicht D, Meyer S, Stitt M (2005) Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses. Plant Physiol 138:1195–1204

    Article  CAS  Google Scholar 

  • Usadel B, Poree F, Nagel A, Lohse M, Czedik-Eysenberg A, Stitt M (2009) A guide to using MapMan to visualize and compare omics data in plants: a case study in the crop species, maize. Plant Cell Environ 32:1211–1229

    Article  Google Scholar 

  • Vanzo E, Ghirardo A, Merl-Pham J, Lindermayr C, Heller W, Hauck SM, Durner J, Schnitzler JP (2014) S-Nitroso-proteome in poplar leaves in response to acute ozone stress. PLoS One 9:e106886

    Article  Google Scholar 

  • Vizcaíno JA, Côté RG, Csordas A, Dianes JA, Fabregat A, Foster JM, Griss J, Alpi E, Birim M, Contell J, O’Kelly G, Schoenegger A, Ovelleiro D, Pérez-Riverol Y, Reisinger F, Ríos D, Wang R, Hermjakob H (2013) The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res 41(Database issue):D1063–D1069

    PubMed  Google Scholar 

  • Wang X, Sakata K, Komatsu S (2018) An integrated approach of proteomics and computational genetic modification effectiveness analysis to uncover the mechanisms of flood tolerance in soybeans. Int J Mol Sci 19:5

    Google Scholar 

  • Xue Y, Liu Z, Gao X, Jin C, Wen L, Yao X, Ren J (2010) GPS-SNO: computational prediction of protein S-nitrosylation sites with a modified GPS algorithm. PLoS One 5:e11290

    Article  Google Scholar 

  • Zaffagnini M, De Mia M, Morisse S, Di Giacinto N, Marchand CH, Maes A, Lemaire SD, Trost P (2016) Protein S-nitrosylation in photosynthetic organisms: a comprehensive overview with future perspectives. Biochim Biophys Acta 1864:952–966

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Xin Wang for the technical support of this research.

Funding

This work was supported by JSPS KAKENHI Grant Number JP15H04445.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akiko Hashiguchi or Setsuko Komatsu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Statement

This article does not contain any studies with human or animal participants performed by any of the authors.

Additional information

Accession Code

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository (Vizcaíno et al. 2013) with data set identifier PXD005993.

Electronic Supplementary Material

ESM 1

(DOCX 23 kb)

ESM 2

(DOCX 50 kb)

ESM 3

(DOCX 94 kb)

ESM 4

(DOCX 90 kb)

ESM 5

(DOCX 80 kb)

ESM 6

(DOCX 70 kb)

ESM 7

(DOCX 51 kb)

ESM 8

(DOCX 16 kb)

ESM 9

(DOCX 33 kb)

ESM 10

(DOCX 38 kb)

ESM 11

(DOCX 32 kb)

ESM 12

(DOCX 36 kb)

ESM 13

(PPTX 1355 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashiguchi, A., Komatsu, S. Early Changes in S-Nitrosoproteome in Soybean Seedlings Under Flooding Stress. Plant Mol Biol Rep 36, 822–831 (2018). https://doi.org/10.1007/s11105-018-1124-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-018-1124-9

Keywords

Navigation