Skip to main content
Log in

Micromorphic and Molecular Studies of Floral Organs of a Multiple Seeded Rice (Oryza sativa L.)

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Jugal is a natural mutant which produces more than one seed in most of its grain. In rice, development of floral organs is directly linked with seed production; thus, to elucidate the underneath mechanism of multiple seeded trait of Jugal, floral organ development was investigated. Microscopic study showed that most of the Jugal flowers bear more than one carpel; the presence of multiple carpels in Jugal flowers was confirmed by scanning electron microscopy (SEM) study. To understand the mechanism of multiple carpels in Jugal flowers, floral meristems of Jugal and IR36 were investigated, and Jugal floral meristem was found enlarged in comparison to IR36. Fourteen floral organ developmental genes of Jugal were sequenced partially, of which seven were sequenced successfully. Six among the successfully sequenced genes found to have variations and of them three genes showed changes in their corresponding amino acid sequences. Three out the seven genes possess unique variations. Expression study showed Jugal flowering genes expressing differently when compared to normal rice IR36.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • 3K RGP (2014) The 3,000 rice genomes project. GigaScience 3:7. https://doi.org/10.1186/2047-217X-3-7

    Article  CAS  Google Scholar 

  • Agrawal KG, Abe K, Yamazaki M, Miyao A, Hirochika A (2005) Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-off unction mutants of the OsMADS1 gene. Plant Mol Biol 59:125–135

    Article  CAS  Google Scholar 

  • Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RJ (2000) Molecular and genetic analysis of the Silky1 gene reveals conservation in floral organ specification between eudicots and monocots. Mol Cell 5:569–579

    Article  CAS  Google Scholar 

  • Bäurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125:655–664

    Article  Google Scholar 

  • Bommert P, Satoh-Nagasawa N, Jackson D, Hirano HY (2005) Genetics and evolution of inflorescence and flower development in grasses. Plant Cell Physiol 46:69–78

    Article  CAS  Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1–20

    CAS  PubMed  Google Scholar 

  • Cockram J, Jones H, Leigh FJ, O’Sullivan D, Powell W, Laurie DA, Greenland AJ (2007) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot 58:1231–1244

    Article  CAS  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  CAS  Google Scholar 

  • Cun-hong P, Ai-hong L, Ru W, Ya-fang Z, Wen T, Chang-yin W, Qi-fa Z, Xue-biao P (2006) Morphogenesis, anatomical observation and primary genetic analysis of a multi-glume floral organ mutant in rice. Rice Sci 13(4):227–233

    Google Scholar 

  • Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14:1935–1940

    Article  CAS  Google Scholar 

  • Dreni L, Jacchia S, Fornara F, Fornari M, Ouwerkerk PB, An G, Colombo L, Kater MM (2007) The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice. Plant J 52:690–699

    Article  CAS  Google Scholar 

  • Dreni L, Osnato M, Kater MM (2013) The ins and outs of the rice AGAMOUS subfamily. Mol Plant 6(3):650–664

    Article  CAS  Google Scholar 

  • Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky MF, Kater MM, Colombo L (2003) MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15:2603–2611

    Article  CAS  Google Scholar 

  • Ferrario S, Immink RG, Angenent GC (2004) Conservation and diversity in flower land. Curr Opin Plant Biol 7:84–91

    Article  Google Scholar 

  • Immink RGH, Kaufmann K, Angement GC (2010) The ‘ABC’ of MADS domain protein behaviour and interactions. Semin Cell Dev Biol 21:87–93

    Article  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Jiang L, Qian Q, Mao L, Zhou QY, Zhai WX (2005) Characterization of the rice floral organ number mutant fon3. J Integr Plant Biol 47(1):100–106

    Article  CAS  Google Scholar 

  • Karmakar J, Roychowdhury R, Kar RK, Deb D, Dey N (2012) Profiling of selected indigenous rice (Oryza sativa L.) landraces of Rarh Bengal in relation to osmotic stress tolerance. Physiol Mol Biol Plants 18:125–132

    Article  CAS  Google Scholar 

  • Karter MM, Dreni L, Colombo L (2006) Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. J Exp Bot 57(13):3433–3444

    Article  Google Scholar 

  • Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125:1198–1205

    Article  CAS  Google Scholar 

  • Kersey PJ, Allen JE, Allot A, Barba M, Boddu S, Bolt BJ, Carvalho-Silva D, Christensen M, Davis P, Grabmueller C, Kumar N, Liu Z, Maurel T, Moore B, McDowall MD, Maheswari U, Naamati G, Newman V, Ong CK, Bolser DM, Silva ND, Howe KL, Langridge N, Maslen G, Staines DM, Yates A (2018) Ensembl Genomes 2018: an integrated omics infrastructure for non-vertebrate species. Nucleic Acids Res 46(D1):D802–D808

    Article  CAS  Google Scholar 

  • Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6:688–698

    Article  CAS  Google Scholar 

  • Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445:652–655

    Article  CAS  Google Scholar 

  • Kyozuka J, Kobayashi T, Morita M, Shimamoto K (2000) Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol 41:710–718

    Article  CAS  Google Scholar 

  • Li N, Zhang DS, Liu HS, Yin CS, Li XX, Liang WQ, Yuan Z, Xu B, Chu HW, Wang J (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18:2999–3014

    Article  CAS  Google Scholar 

  • Li Y, Xu P, Zhang H, Peng H, Zhang Q, Wang X, Wu X (2007) Characterization and identification of a novel mutant fon(t) on floral organ number and floral organ identity in rice. J Genet Genomics 34:730–737

    Article  Google Scholar 

  • Li HF, Liang WQ, Yin CS, Zhu L, Zhang DB (2011) Genetic interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in specifying rice floral organ identities and meristem determinacy. Plant Physiol 156:263–274

    Article  CAS  Google Scholar 

  • Linder H, Rudall P (2005) Evolutionary history of poales. Annu Rev Ecol Evol Syst 36:107–124

    Article  Google Scholar 

  • Litt A, Kramer MK (2010) The ABC model and the diversification of floral organ identity. Semin Cell Dev Biol 21:129–137

    Article  CAS  Google Scholar 

  • Lopez-Dee ZP, Wittich P, Enrico Pè M, Rigola D, Del IB, Sari MG, Kater MM, Colombo L (1999) OsMADS13, a novel rice MADS-box gene expressed during ovule development. Dev Genet 25:237–244

    Article  CAS  Google Scholar 

  • Mansueto L, Fuentes RR, Chebotarov D, Borja NF, Detras J, Abriol-Santos MJ, Palis K, Poliakov A, Dubchak I, Solovyev V, Hamilton SR, McNally LK, Alexandrov N, Mauleona R (2016) SNP-Seek II: a resource for allele mining and analysis of big genomic data in Oryza sativa. Curr Plant Biol 7(8):16–25

    Article  Google Scholar 

  • Nagasawa N, Miyoshi M, Nagato Y (1996) DL regulates both leaf and pistil development in rice. Rice Genetics Newsletter 13:102–105

    Google Scholar 

  • Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y (2003) SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development 130:705–718

    Article  CAS  Google Scholar 

  • Pandian RT, Thiyagarajan K (2004) Inheritance of floral traits in spontaneous mutant in rice (Oryza sativa L.). Curr Sci 87:1051–1052

    Google Scholar 

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203

    Article  CAS  Google Scholar 

  • Pelucchi N, Fornara F, Favalli C, Masiero S, Lago C, Pe ME, Colombo L, Kater MM (2002) Comparative analysis of rice MADS-box genes expressed during flower development. Sex Plant Reprod 15:113–122

    Article  CAS  Google Scholar 

  • Prain D (1903) Bengal plants, vol 2. Botanical Survey of India, Calcutta, p 1184

  • Prasad K, Parameswaran S, Vijayraghavan U (2005) OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs. Plant J 43:915–928

    Article  CAS  Google Scholar 

  • Preston JC, Kellogg EA (2006) Reconstructing the evolutionary history of paralogous APETALA1/FRUITFULL-like genes in grasses (Poaceae). Genetics 174:421–437

    Article  CAS  Google Scholar 

  • Priya A, Das SP, Goswami S, Adak MK, Deb D, Dey N (2015) An exploratory study on allelic diversity for five genetic loci associated with floral organ development in rice. Am J Plant Sci 6:1973–1980

    Article  CAS  Google Scholar 

  • Prusinkiewicz P, Erasmus Y, Lane B, Harder LD, Coen E (2007) Evolution and development of inflorescence architectures. Science 316:1452–1456

    Article  CAS  Google Scholar 

  • Reinheimer R, Kellogg EA (2009) Evolution of AGL6-like MADS box genes in grasses (Poaceae): ovule expression is ancient and palea expression is new. Plant Cell 21:2591–2605

    Article  CAS  Google Scholar 

  • Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinf 18:529. https://doi.org/10.1186/s12859-017-1934-z

    Article  Google Scholar 

  • Soltis DE, Chanderbali AS, Kim S, Buzgo M, Soltis PS (2007) The ABC model and its applicability to basal angiosperms. Ann Bot 100:155–163

    Article  CAS  Google Scholar 

  • Thompson BE, Hake S (2009) Translational biology: from Arabidopsis flowers to grass inflorescence architecture. Plant Physiol 149:38–45

    Article  CAS  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115

    Article  CAS  Google Scholar 

  • Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78:203–209

    Article  CAS  Google Scholar 

  • Wheeler DL, Church DM, Federhen S, Lash AE, Madden TL, Pontius JU, Schuler GD, Schriml LM, Sequeira E, Tatiana A. Tatusova TA, Lukas Wagner (2003) Database resources of the National Center for Biotechnology. Nucleic Acids Res 30(1):13–16

  • Xu GX, Hongzhi K (2007) Duplication and divergence of floral MADS-box genes in grasses: evidence for the generation and modification of novel regulators. J Integr Plant Biol 49:927–939

    Article  CAS  Google Scholar 

  • Yamaguchi T, Nagasawa KS, Matsuoka M, Nagato Y, Hirano HY (2004) The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16:500–509

    Article  CAS  Google Scholar 

  • Yamaguchi T, Lee DY, Miyao A, Hirochika H, An G, Hirano HY (2006) Functional diversification of the two C-class genes OsMADS3 and OsMADS58 in Oryza sativa. Plant Cell 18:15–28

    Article  CAS  Google Scholar 

  • Yoshida H, Nagato Y (2011) Flower development in rice. J Exp Bot 62(14):4719–4730

    Article  CAS  Google Scholar 

  • Zanis MJ (2007) Grass spikelet genetics and duplicate gene comparisons. Int J Plant Sci 168:93–110

    Article  CAS  Google Scholar 

  • Zhang J, Li S, Li P (2015) Phenotypic characterization, genetic analysis and molecular mapping of a new floral organ mutant gene in rice. Am J Plant Sci 6:2973–2983

    Article  CAS  Google Scholar 

Download references

Funding

The work was financially supported by SERB, Department of Science and Technology, Government of India in form of a research project (Ref. No. SB/YS/LS-187/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narottam Dey.

Electronic Supplementary Material

ESM 1

(DOCX 213 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S.P., Deb, D. & Dey, N. Micromorphic and Molecular Studies of Floral Organs of a Multiple Seeded Rice (Oryza sativa L.). Plant Mol Biol Rep 36, 764–775 (2018). https://doi.org/10.1007/s11105-018-1116-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-018-1116-9

Keywords

Navigation