Skip to main content
Log in

Isolation and Comparative Analysis of Two Na+/H+ Antiporter NHX2 Genes from Pyrus betulaefolia

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The vacuolar Na+/H+ antiporter NHX gene is a salt tolerance determinant in higher plants. Pyrus betulaefolia, a popular rootstock in Asia, can improve pear salt tolerance through grafting. In this study, two novel NHX genes were isolated from P. betulaefolia using its NaCl-treated transcriptome information. Both PbNHX2.1 and PbNHX2.2 have typical DNA structures and conservative protein motifs often found in vacuolar Na+/H+ antiporters. They are classified as the same NHXs in the phylogenetic tree. Furthermore, both PbNHX2s localized to the plant cell tonoplast. The NaCl treatment strongly induced the expression of PbNHX2.1 in shoots and PbNHX2.2 in the whole plant, but the transcript levels of PbNHX2.2 were much higher. This result meant that they have diverse functions during sodium ion transport in P. betulaefolia. The PbNHX2.2 transcription was influenced by polyethylene glycol and abscisic acid (ABA). An ABA cis-acting element was found in its promoter region, which indicated that PbNHX2.2 transcriptional regulation under salt and osmotic stresses may be ABA-dependent. Yeast recombined experiments revealed that PbNHX2.1 and PbNHX2.2 restored, with different efficacies, the Na+-sensitive phenotype of a endosomal/vacuolar Na+/H+ antiporter mutant, AXT3. These PbNHX2s proteins, especially PbNHX2.2, facilitated Na+ ion transport and maintained intracellular K+ status. The results suggest that PbNHX2.2 was a salt tolerance determinant and had a major function in the vacuolar compartmentalization of Na+. The information on gene features, transcriptional pattern, and the basic function of the NHX family members in P. betulaefolia will help reveal the molecular mechanism underlying salt tolerance in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

GFP:

Green fluorescent protein

Hyg:

Hygromycin

MEGA:

Molecular evolutionary genetics analysis

NHX:

Na+/H+ antiporter

OD600 :

Absorbance value at 600 nm

ORF:

Open reading frame

PEG:

Polyethylene glycol

qPCR:

Quantitative PCR

References

  • Andres Z, Perez-Hormaeche J, Leidi EO, Schlucking K, Steinhorst L, McLachlan DH, Schumacher K, Hetherington AM, Kudla J, Cubero B, Pardo JM (2014) Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake. Proc Natl Acad Sci 111(17):E1806–E1814

    Article  PubMed  CAS  Google Scholar 

  • Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology. AAAI Press, Menlo Park, pp. 28–36

  • Bañuelos MA, Sychrová H, Bleykasten-Grosshans C, Souciet JL, Potier S (1998) The Nha1 antiporter of Saccharomyces cerevisiae mediates sodium and potassium efflux. Microbiology 144:2749–2758

    Article  PubMed  Google Scholar 

  • Barragan V, Leidi EO, Andres Z, Rubio L, Luca AD, Fernandez JA, Cubero B, Pardoa JM (2012) Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24:1127–1142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bassil E, Blumwald E (2014) The ins and outs of intracellular ion homeostasis: NHX-type cation/H+ transporters. Curr Opin Plant Biol 22:1–6

    Article  PubMed  CAS  Google Scholar 

  • Bassil E, Tajima H, Liang YC, Ohto M, Ushijima K, Nakano R, Esumi T, Coku A, Belmonte M, Blumwald E (2011) The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant Cell 23:3482–3497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bassil E, Coku A, Blumwald E (2012) Cellular ion homeostasis: emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development. J Exp Bot 63:5727–5740

    Article  PubMed  CAS  Google Scholar 

  • Cao B, Long D, Zhang M, Liu C, Xiang Z, Zhao A (2016) Molecular characterization and expression analysis of the mulberry Na+ /H+ exchanger gene family. Plant Physiol Biochem 99:49–58

    Article  PubMed  CAS  Google Scholar 

  • Chanroj S, Wang GY, Venema K, Zhang MW, Delwiche CF, Sze H (2012) Conserved and diversified gene families of monovalent cation/H+ antiporters from algae to flowering plants. Front Plant Sci 3(25):25

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fukuda A, Nakamura A, Hara N, Toki S, Tanaka Y (2011) Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta 233:175–188

    Article  PubMed  CAS  Google Scholar 

  • Gietz D, St. Jean A, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li H, Lin J, Yang QS, Li XG, Chang YH (2017) Comprehensive analysis of differentially expressed genes under salt stress in pear (Pyrus betulaefolia) using RNA-Seq. Plant Growth Regul 82:409–420. https://doi.org/10.1007/s10725-017-0266-3

    Article  CAS  Google Scholar 

  • Liu L, Zeng YL, Pan XY, Zhang FC (2012) Isolation, molecular characterization, and functional analysis of the vacuolar Na+/H+ antiporter genes from the halophyte Karelinia caspica. Mol Biol Rep 39:7193–7202

    Article  PubMed  CAS  Google Scholar 

  • Maathuis FJM (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12:250–258

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K, Chun JP, Tamura F, Kamamoto Y, Tanabe K (2006) Salt tolerance in Pyrus species is linked to levels of Na and cl translocation from roots to leaves. J Jpn Soc Hortic Sci 75:385–391

    Article  CAS  Google Scholar 

  • Matsumoto K, Tamura F, Chun JP, Ikeda T, Imanishi K, Tanabe K (2007) Enhancement in salt tolerance of Japanese pear by using Pyrus betulaefolia rootstock. Hortic Res-Japan 6:47–52

    Google Scholar 

  • Montiel V, Ramos J (2007) Intracellular Na+ and K+ distribution in Debaryomyces hansenii. Cloning and expression in Saccharomyces cerevisiae of DhNHX1. FEMS Yeast Res 7:102–109

    Article  PubMed  CAS  Google Scholar 

  • Nass R, Rao R (1998) Novel localization of a Na+/H+ exchanger in a late endosomal compartment of yeast: implications for vacuole biogenesis. J Biol Chem 273:21054–21060

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi M, Fukada-Tanaka S, Hoshino A, Takada J, Inagaki Y, Iida S (2005) Characterization of a novel Na+/H+ antiporter gene InNHX2 and comparison of InNHX2 with InNHX1, which is responsible for blue flower coloration by increasing the vacuolar pH in Japanese morning glory. Plant Cell Physiol 46:259–267

    Article  PubMed  CAS  Google Scholar 

  • Okubo M, Sakuratani T (2000) Effects of sodium chloride on survival and stem elongation of two Asian pear rootstock seedlings. Sci Hortic 85:85–90

    Article  CAS  Google Scholar 

  • Okubo M, Furukawa Y, Sakuratani T (2000) Growth, flowering and leaf properties of pear cultivars grafted on two Asian pear rootstock seedlings under NaCl irrigation. Sci Hortic 85:91–101

    Article  CAS  Google Scholar 

  • Rodríguez-Rosales MP, Jiang X, Gálvez FJ, Aranda MN, Cubero B, Venema K (2008) Overexpression of the tomato K+/H+ antiporter LeNHX2 confers salt tolerance by improving potassium compartmentalization. New Phytol 179:366–377

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tuteja N (2007) Chapter twenty-four—mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–438

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Zhai H, He SZ, Zhang H, Ren ZT, Zhang DD, Liu QC (2016) A vacuolar Na+/H+ antiporter gene, IbNHX2, enhances salt and drought tolerance in transgenic sweetpotato. Sci Hortic 201:153–166

    Article  CAS  Google Scholar 

  • Wei Q, Guo YJ, Cao HM, Kuai BK (2011) Cloning and characterization of an AtNHX2-like Na+/H+ antiporter gene from Ammopiptanthus mongolicus (Leguminosae) and its ectopic expression enhanced drought and salt tolerance in Arabidopsis thaliana. Plant Cell Tissue Organ Cult 105:309–316

    Article  CAS  Google Scholar 

  • Wu GX, Wang G, Ji J, Li Y, Gao HL, Wu J, Guan WZ (2015) A chimeric vacuolar Na+/H+ antiporter gene evolved by DNA family shuffling confers increased salt tolerance in yeast. J Biotechnol 203:1–8

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Zhou Y, Hong S, Xia Z, Cui D, Guo J, Xu H, Jiang X (2013) Functional characterization of a wheat NHX antiporter gene TaNHX2 that encodes a K+/H+ exchanger. PLoS One 8(11):e78098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:529–539

    Article  PubMed  CAS  Google Scholar 

  • Yu JN, Huang J, Wang ZN, Zhang JS, Chen SY (2007) An Na+/H+ antiporter gene from wheat plays an important role in stress tolerance. J Biosci 32:1153–1161

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank International Science Editing (http://www.internationalscienceediting.com) for editing this manuscript.

Funding

This work was supported by the Jiangsu Agriculture Science and Technology Innovation Fund of China [Grant No. CX (14) 5018], the Jiangsu Natural Science Foundation of China (Grant No. BK20151361), and the National Natural Sciences Foundation of China (Grant No. 1372051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Hong Chang.

Electronic Supplementary Material

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Liu, W., Yang, QS. et al. Isolation and Comparative Analysis of Two Na+/H+ Antiporter NHX2 Genes from Pyrus betulaefolia. Plant Mol Biol Rep 36, 439–450 (2018). https://doi.org/10.1007/s11105-018-1089-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-018-1089-8

Keywords

Navigation