Skip to main content
Log in

Homoeolog Expression Is Modulated Differently by Different Subgenomes in Brassica napus Hybrids and Allotetraploids

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Synthetic and natural allotetraploid Brassica napus (2n = 38, AACC) have been widely used as a model to study the genetic changes associated with allopolyploidization; however, there has been little research on the homoeolog expression patterns and the roles of cis and trans regulation. Herein, homoeolog expression patterns were assessed by using RNA-seq for two interspecific hybrids (AnCo with the extracted A subgenome from natural B. napus, and ArCo with the A subgenome from extant B. rapa), synthetic and natural allopolyploids (CoCoArAr and AnAnCnCn), and the diploid parents. The ranges of homoeolog expression bias decreased after hybridization, whereas the extents of homoeolog expression bias and non-conserved expression, especially transgressive expression, increased over evolutionary time. Despite sharing the same C subgenome parent, these two hybrids showed different homolog expression patterns in many respects. In AnCo, the trans-regulatory factors from Co subgenome tended to cause downregulation of An subgenome homoeologs, but trans-regulatory factors from the An subgenome acted as both activators and repressors, and such asymmetric effects of trans-regulatory factors might explain why the homoeolog expression was biased toward the C subgenome after genome merger. No significant asymmetric effects of trans-regulatory factors were found in ArCo, which was consistent with the overall balanced expression of homoeologs. These results suggested that A subgenomes with different regulatory systems might act differently in modulating homoeolog expression after merger with the C subgenome, resulting in either balanced or unbalanced homoeolog expression biases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bell GD, Kane NC, Rieseberg LH, Adams KL (2013) RNA-seq analysis of allele-specific expression, hybrid effects, and regulatory divergence in hybrids compared with their parents from natural populations. Genome Biol Evol 5:1309–1323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H et al (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  PubMed  CAS  Google Scholar 

  • Combes MC, Hueber Y, Dereeper A, Rialle S, Herrera JC, Lashermes P (2015) Regulatory divergence between parental alleles determines gene expression patterns in hybrids. Genome Biol Evol 7:1110–1121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui C, Ge X, Gautam M, Kang L, Li Z (2012) Cytoplasmic and genomic effects on meiotic pairing in Brassica hybrids and allotetraploids from pair crosses of three cultivated diploids. Genetics 191:725–738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–461

    Article  PubMed  CAS  Google Scholar 

  • Flagel LE, Wendel JF (2010) Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytol 186:184–193

  • Gaeta RT, Yoo SY, Pires J, Doerge RW, Chen ZJ, Osborn TC (2009) Analysis of gene expression in resynthesized Brassica napus allopolyploids using Arabidopsis 70mer oligo microarrays. PloS One 4:e4760

  • Ge XH, Ding L, Li ZY (2013) Nucleolar dominance and different genome behaviors in hybrids and allopolyploids. Plant Cell Rep 2:1661–1673

  • Groszmann M, Greaves IK, Albertyn ZI, Scofield GN, Peacock WJ, Dennis ES (2011) Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc Natl Acad Sci U S A 108:2617–2622

    Article  PubMed  PubMed Central  Google Scholar 

  • Grover C, Gallagher J, Szadkowski E, Yoo M, Flagel L et al (2012) Homoeolog expression bias and expression level dominance in allopolyploids. New Phytol 196:966–971

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Shao Y, Du K, Ran L, Fang X et al (2013) Use of digital gene expression to discriminate gene expression differences in early generations of resynthesized Brassica napus and its diploid progenitors. BMC Genomics 14:72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiao W, Yuan J, Jiang S, Liu Y, Wang L, et al (2018) Asymmetrical changes of gene expression, small RNAs and chromatin in two resynthesized wheat allotetraploids. Plant J 93(5):828–842

  • Li A, Liu D, Wu J, Zhao X, Hao M, Geng S, Yan J, Jiang X, Zhang L, Wu J, Yin L, Zhang R, Wu L, Zheng Y, Mao L (2014) mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. Plant Cell 26:1878–1900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu S, Liu Y, Yang X, Tong C, Edwards D et al (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McManus CJ, Coolon JD, Duff MO, Eipper-Mains J, Graveley BR et al (2010) Regulatory divergence in Drosophila revealed by mRNA-seq. Genome Res 20:816–825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462

    Article  PubMed  CAS  Google Scholar 

  • Shen Y, Sun S, Hua S, Shen E, Ye CY, Cai D, Timko MP, Zhu QH, Fan L (2017) Analysis of transcriptional and epigenetic changes in hybrid vigor of allopolyploid Brassica napus uncovers key roles for small RNAs. Plant J 91:874–893

    Article  PubMed  CAS  Google Scholar 

  • Shi X, Ng DW, Zhang C, Comai L, Ye W et al (2012) Cis- and trans-regulatory divergence between progenitor species determines gene-expression novelty in Arabidopsis allopolyploids. Nat Commun 3:950

    Article  PubMed  CAS  Google Scholar 

  • Soltis DE, Visger CJ, Marchant DB, Soltis PS (2016) Polyploidy: Pitfalls and paths to a paradigm. Am J Bot 103 (7):1146–1166

  • Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Nati Acad Sci USA 92:7719–7723

  • Tan C, Pan Q, Cui C, Xiang Y, Ge X et al (2016) Genome-wide gene/genome dosage imbalance regulates gene expressions in synthetic Brassica napus and derivatives (AC, AAC, CCA, CCAA). Front Plant Sci 7:1432

    PubMed  PubMed Central  Google Scholar 

  • Tu YQ, Sun J, Ge XH, Li ZY (2010) Production and genetic analysis of partial hybrids from intertribal sexual crosses between Brassica napus and Isatis indigotica and progenies. Genome 53:146–156

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138

  • Wang X, Wang H, Wang J, Sun R, Wu J et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Sun X, Zhao Y, Guo X, Jiang H, Li H, Gu Z (2015) Evolution of gene regulation during transcription and translation. Genome Biol Evol 7:1155–1167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wendel JF, Jackson SA, Meyers BC, Wing RA (2016) Evolution of plant genome architecture. Genome Biol 17:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wendel JF, Lisch D, Hu G, Mason AS (2018) The long and short of doubling down: polyploidy, epigenetics, and the temporal dynamics of genome fractionation. Curr Opin Genet Dev 49:1–7

    Article  PubMed  CAS  Google Scholar 

  • Woodhouse MR, Cheng F, Pires JC, Lisch D, Freeling M, Wang X (2014) Origin, inheritance, and gene regulatory consequences of genome dominance in polyploids. Proc Natl Acad Sci U S A 111:5283–5288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiong Z, Gaeta RT, Pires JC (2011) Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Natl Acad Sci U S A 108:7908–7913

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu C, Bai Y, Lin X, Zhao N, Hu L, Gong Z, Wendel JF, Liu B (2014) Genome-wide disruption of gene expression in allopolyploids but not hybrids of rice subspecies. Mol Biol Evol 31:1066–1076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang J, Liu D, Wang X, Ji C, Cheng F, Liu B, Hu Z, Chen S, Pental D, Ju Y, Yao P, Li X, Xie K, Zhang J, Wang J, Liu F, Ma W, Shopan J, Zheng H, Mackenzie SA, Zhang M (2016a) The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat Genet 48:1225–1232

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Wang X, Huang H, Ren D, Su Y et al (2016b) Natural variation of H3K27me3 modification in two Arabidopsis accessions and their hybrid. J Integr Plant Biol 58(5):466–474

    Article  PubMed  CAS  Google Scholar 

  • Yoo MJ, Szadkowski E, Wendel JF (2013) Homoeolog expression bias and expression level dominance in allopolyploid cotton. Heredity 110:171–180

    Article  PubMed  CAS  Google Scholar 

  • Yoo MJ, Liu X, Pires JC, Soltis PS, Soltis DE (2014) Nonadditive gene expression in polyploids. Annu Rev Genet 48:485–517

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Pan Q, Cui C, Tan C, Ge X et al (2015) Genome-specific differential gene expressions in resynthesized Brassica allotetraploids from pair-wise crosses of three cultivated diploids revealed by RNA-seq. Front Plant Sci 6:957

    PubMed  PubMed Central  Google Scholar 

  • Zhang D, Pan Q, Tan C, Zhu B, Ge X et al (2016) Genome-wide gene expressions respond differently to A-subgenome origins in Brassica napus synthetic hybrids and natural allotetraploid. Front Plant Sci 7:1508

    PubMed  PubMed Central  Google Scholar 

  • Zhu B, Tu Y, Zeng P, Ge X, Li Z (2016) Extraction of the constituent subgenomes of the natural allopolyploid rapeseed (Brassica napus L.). Genetics 204:1015–1027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by National Key Research and Development Program of China (Grant No. 2016YFD0100202), National Natural Science Foundation of China (Grant No. 31701462), The Hunan Provincial Natural Science Foundation of China (Grant No. 2016JJ1010), and Foundation of Hunan University of Science and Technology (Grant No. E51760).

Author information

Authors and Affiliations

Authors

Contributions

ZYL and YML conceived the study. CT, XHG, and LLL participated in sample preparations for RNA-seq. DWZ and QP analyzed the data and wrote the manuscript. All the authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Zaiyun Li or Mingli Yan.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Pan, Q., Tan, C. et al. Homoeolog Expression Is Modulated Differently by Different Subgenomes in Brassica napus Hybrids and Allotetraploids. Plant Mol Biol Rep 36, 387–398 (2018). https://doi.org/10.1007/s11105-018-1087-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-018-1087-x

Keywords

Navigation