Advertisement

Plant Molecular Biology Reporter

, Volume 34, Issue 6, pp 1204–1214 | Cite as

Genome-Wide Discovery of Tissue-Specific Genes in Maize

  • Feng Lin
  • Huabin Bao
  • Jun Yang
  • Yuhe Liu
  • Huixue Dai
  • Han Zhao
Original Paper

Abstract

Analysis of spatial and temporal gene expression pattern is instrumental to elucidation of gene networks and molecular mechanisms of tissue development. It also holds great value to applied research by providing tissue-specific (TS) promoter candidates for transgenic studies. Here, we present a large-scale systematic discovery of tissue-specific genes in maize. Profiles of TS genes were generated from a maize transcriptome atlas, with 71, 539, 23, 352, 51, and 287 genes showing expression specificity in the root, leaf, cob, endosperm, silk, and anther. Functional annotations and enrichment analysis of these TS genes identified pathways overrepresented for each tissue. Tissue specificity was experimentally confirmed by RT-PCR, mRNA in situ hybridization, and transgenic expression of promoter-fluorescent proteins. Two significantly enriched binding motifs, CATTGYCG and KGGTATCA, were identified from the promoter analysis of the anther- and endosperm-specifically expressed genes. Further, co-expression analysis on a broader set of maize germplasms identified molecular networks of TS genes and revealed a number of novel transcripts including non-coding RNA expressing the same pattern with the TS genes from B73. Our global analysis of maize TS transcriptomes could shed light on the molecular mechanisms of tissue specificity and facilitate transgenic studies by providing a valuable resource of TS promoter candidates.

Keywords

Maize Transcriptome analysis Tissue-specific expression Promoter Transgene 

Notes

Acknowledgments

This work was supported by a grant from Natural Science Foundation of Jiangsu Province, China (BK20141385), Natural Science Foundation of China (31271728), and Jiangsu Agriculture Science and Technology Innovation Fund [CX(14)5054].

Authors’ Contributions

H.Z. and F.L. conceived, designed, and conducted the experiments. H.B., H.X.D., and J.Y. helped in conducting the experiments. F.L. and H.B. analyzed the data and results. F.L., Y.H.L., and H.Z. wrote the manuscript. All authors read and approved the final manuscript.

Compliance with Ethical Standards

Competing Interests

The authors declare that they have no competing interests.

Supplementary material

11105_2016_1001_MOESM1_ESM.xlsx (83 kb)
Supplementary Table S1 The list of 1323 tissue-specific gene candidates with average FPKM detected in three RNA-seq datasets. (XLSX 82 kb)
11105_2016_1001_MOESM2_ESM.xlsx (23 kb)
Supplementary Table S2 Non-coding predictions of 389 unannotated TS transcripts with sequences. (XLSX 23 kb)
11105_2016_1001_MOESM3_ESM.xlsx (12 kb)
Supplementary Table S3 Functions enriched in each tissue analyzed by using SEA tool. (XLSX 11 kb)
11105_2016_1001_MOESM4_ESM.xlsx (20 kb)
Supplementary Table S4 Electronic northern analysis of predicted genes queried to EST libraries. (XLSX 19 kb)
11105_2016_1001_MOESM5_ESM.xlsx (18 kb)
Supplementary Table S5 The list of 270 genes clustered into six modules with co-expression in seed. (XLSX 18 kb)

References

  1. Anderson TJ, Lamsal BP (2011) Review: Zein extraction from corn, corn products, and coproducts and modifications for various applications: a review. Cereal Chem 88:159–173CrossRefGoogle Scholar
  2. Bailey TL (2011) DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics 27:1653–1659CrossRefPubMedPubMedCentralGoogle Scholar
  3. Belmonte MF et al (2013) Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed. Proc Natl Acad Sci 110:E435–E444CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brown AP et al (2012) Tissue-specific whole transcriptome sequencing in castor, directed at understanding triacylglycerol lipid biosynthetic pathways. PLoS One 7:e30100CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chávez-Bárcenas AT, Valdez-Alarcón JJ, Martínez-Trujillo M, Chen L, Xoconostle-Cázares B, Lucas WJ, Herrera-Estrella L (2000) Tissue-specific and developmental pattern of expression of the rice sps1 gene. Plant Physiol 124:641–654CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen M-X et al (2014) Strong seed-specific protein expression from the Vigna radiata storage protein 8SGα promoter in transgenic Arabidopsis seeds. J Biotechnol 174:49–56CrossRefPubMedGoogle Scholar
  8. Childs KL, Davidson RM, Buell CR (2011) Gene coexpression network analysis as a source of functional annotation for rice genes. PloS one 6:e22196CrossRefPubMedPubMedCentralGoogle Scholar
  9. Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689CrossRefPubMedGoogle Scholar
  10. Coen ES, Romero J, Doyle S, Elliott R, Murphy G, Carpenter R (1990) Floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell 63:1311–1322CrossRefPubMedGoogle Scholar
  11. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676CrossRefPubMedGoogle Scholar
  12. Cook M, Thilmony R (2012) The OsGEX2 gene promoter confers sperm cell expression in transgenic rice. Plant Mol Biol Report 30:1138–1148CrossRefGoogle Scholar
  13. Cox MP, Peterson DA, Biggs PJ (2010) SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC bioinformatics 11:485CrossRefPubMedPubMedCentralGoogle Scholar
  14. de Pater S, Pham K, Memelink J, Kijne J (1996) Binding specificity and tissue-specific expression pattern of the Arabidopsis bZIP transcription factor TGA2. Mol Gen Genet MGG 250:237–239PubMedGoogle Scholar
  15. Diaz I, Vicente‐Carbajosa J, Abraham Z, Martínez M, Moneda IL, Carbonero P (2002) The GAMYB protein from barley interacts with the DOF transcription factor BPBF and activates endosperm‐specific genes during seed development. Plant J 29:453–464CrossRefPubMedGoogle Scholar
  16. Diaz I, Martinez M, Isabel‐Lamoneda I, Rubio‐Somoza I, Carbonero P (2005) The DOF protein SAD, interacts with GAMYB in plant nuclei and activates transcription of endosperm‐specific genes during barley seed development. Plant J 42:652–662CrossRefPubMedGoogle Scholar
  17. Dobrin R et al (2009) Multi-tissue coexpression networks reveal unexpected subnetworks associated with disease. Genome Biol 10:R55CrossRefPubMedPubMedCentralGoogle Scholar
  18. Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70. doi: 10.1093/nar/gkq310 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dutt M, Ananthakrishnan G, Jaromin M, Brlansky R, Grosser J (2012) Evaluation of four phloem-specific promoters in vegetative tissues of transgenic citrus plants. Tree Physiol 32:83–93CrossRefPubMedGoogle Scholar
  20. Dutt M, Dhekney SA, Soriano L, Kandel R, Grosser JW (2014) Temporal and spatial control of gene expression in horticultural crops. Horticulture Research. 1.Google Scholar
  21. Fagerberg L et al (2014) Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics 13:397–406CrossRefPubMedGoogle Scholar
  22. Geng L, Duan X, Liang C, Shu C, Song F, Zhang J (2014) Mining tissue-specific contigs from peanut (Arachis hypogaea L.) for promoter cloning by deep transcriptome sequencing. Plant Cell Physiol 55:1793–1801CrossRefPubMedGoogle Scholar
  23. Gubler F, Raventos D, Keys M, Watts R, Mundy J, Jacobsen JV (1999) Target genes and regulatory domains of the GAMYB transcriptional activator in cereal aleurone. Plant J 17:1–9CrossRefPubMedGoogle Scholar
  24. Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS (2007) Quantifying similarity between motifs. Genome Biol 8:R24CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hirsch CN et al (2014) Insights into the maize pan-genome and pan-transcriptome. Online 26:121–135Google Scholar
  26. Hochholdinger F, Wulff D, Reuter K, Park WJ, Feix G (2000) Tissue-specific expression of AUX1 in maize roots. J Plant Physiol 157:315–319CrossRefGoogle Scholar
  27. Ishida Y, Hiei Y, Komari T (2007) Agrobacterium-mediated transformation of maize. Nat Protoc 2:1614–1621CrossRefPubMedGoogle Scholar
  28. Joshi JB et al. (2015) A maize α-zein promoter drives an endosperm-specific expression of transgene in rice. Physiology and Molecular Biology of Plants 21:35-42Google Scholar
  29. Kathuria H, Giri J, Tyagi H, Tyagi AK (2007) Advances in transgenic rice biotechnology. Crit Rev Plant Sci 26:65–103CrossRefGoogle Scholar
  30. Kong L, Zhang Y, Ye Z-Q, Liu X-Q, Zhao S-Q, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35:W345–W349CrossRefPubMedPubMedCentralGoogle Scholar
  31. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics 9:559CrossRefPubMedPubMedCentralGoogle Scholar
  32. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25CrossRefPubMedPubMedCentralGoogle Scholar
  33. Larkins BA, Pedersen K, Marks MD, Wilson DR (1984) The zein proteins of maize endosperm. Trends Biochem Sci 9:306–308CrossRefGoogle Scholar
  34. Law M et al (2015) Automated update, revision, and quality control of the maize genome annotations using MAKER-P improves the B73 RefGen_v3 gene models and identifies new genes. Plant Physiol 167:25–39CrossRefPubMedGoogle Scholar
  35. Li H et al (2013) Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet 45:43–50CrossRefPubMedGoogle Scholar
  36. Liang S, Li Y, Be X, Howes S, Liu W (2006) Detecting and profiling tissue-selective genes. Physiol Genomics 26:158–162CrossRefPubMedGoogle Scholar
  37. Lightfoot DJ, Orford SJ, Timmis JN (2013) Identification and characterisation of cotton boll wall-specific gene promoters for future transgenic cotton varieties. Plant Mol Biol Report 31:174–184CrossRefGoogle Scholar
  38. Lin F, Jiang L, Liu Y, Lv Y, Dai H, Zhao H (2014) Genome-wide identification of housekeeping genes in maize. Plant Mol Biol 86:543–554CrossRefPubMedGoogle Scholar
  39. Melzer R, Verelst W, Theißen G (2009) The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in ‘floral quartet’-like complexes in vitro. Nucleic Acids Res 37:144–157CrossRefPubMedGoogle Scholar
  40. Nain V, Verma A, Kumar N, Sharma P, Ramesh B, Kumar PA (2008) Cloning of an ovule specific promoter from Arabidopsis thaliana and expression of beta-glucuronidase. Indian J Exp Biol 46:207PubMedGoogle Scholar
  41. Odell JT, Nagy F, Chua N-H (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812CrossRefPubMedGoogle Scholar
  42. Opsahl‐Ferstad HG, Deunff EL, Dumas C, Rogowsky PM (1997) ZmEsr, a novel endosperm‐specific gene expressed in a restricted region around the maize embryo. Plant J 12:235–246CrossRefPubMedGoogle Scholar
  43. Porto MS, Pinheiro MPN, Batista VGL, Dos Santos RC, de Albuquerque Melo Filho P, de Lima LM (2014) Plant promoters: an approach of structure and function. Molecular biotechnology 56:38–49CrossRefPubMedGoogle Scholar
  44. Rahim MA, Busatto N, Trainotti L (2014) Regulation of anthocyanin biosynthesis in peach fruits. Planta 240:913–929CrossRefPubMedGoogle Scholar
  45. Rosa BA, Jasmer DP, Mitreva M (2014) Genome-wide tissue-specific gene expression, co-expression and regulation of co-expressed genes in adult nematode Ascaris suum. PLoS Negl Trop Dis 8:e2678CrossRefPubMedPubMedCentralGoogle Scholar
  46. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods in Molecular Biology 132:365-386Google Scholar
  47. Shannon P et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504CrossRefPubMedPubMedCentralGoogle Scholar
  48. Smale ST, Kadonaga JT (2003) The RNA polymerase II core promoter. Annu Rev Biochem 72:449–479CrossRefPubMedGoogle Scholar
  49. Smirnova OG, Ibragimova SS, Kochetov AV (2012) Simple database to select promoters for plant transgenesis. Transgenic Res 21:429–437CrossRefPubMedGoogle Scholar
  50. Subramanian S, Hu X, Lu G, Odelland JT, Yu O (2004) The promoters of two isoflavone synthase genes respond differentially to nodulation and defense signals in transgenic soybean roots. Plant Mol Biol 54:623–639CrossRefPubMedGoogle Scholar
  51. Trapnell C et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515CrossRefPubMedPubMedCentralGoogle Scholar
  52. Turcich MP, Hamilton DA, Mascarenhas JP (1993) Isolation and characterization of pollen-specific maize genes with sequence homology to ragweed allergens and pectate lyases. Plant Mol Biol 23:1061–1065CrossRefPubMedGoogle Scholar
  53. Vicente-Carbajosa J, Moose SP, Parsons RL, Schmidt RJ (1997) A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Proc Natl Acad Sci 94:7685–7690CrossRefPubMedPubMedCentralGoogle Scholar
  54. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63CrossRefPubMedPubMedCentralGoogle Scholar
  55. Xiao S-J, Zhang C, Zou Q, Ji Z-L (2010) TiSGeD: a database for tissue-specific genes. Bioinformatics 26:1273–1275CrossRefPubMedPubMedCentralGoogle Scholar
  56. Ye R, Zhou F, Lin Y (2012) Two novel positive cis-regulatory elements involved in green tissue-specific promoter activity in rice (Oryza sativa L ssp.). Plant Cell Rep 31:1159–1172CrossRefPubMedGoogle Scholar
  57. Yin T et al (2009) Two negative cis-regulatory regions involved in fruit-specific promoter activity from watermelon (Citrullus vulgaris S.). J Exp Bot 60:169–185CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Feng Lin
    • 1
  • Huabin Bao
    • 1
    • 2
  • Jun Yang
    • 3
  • Yuhe Liu
    • 4
  • Huixue Dai
    • 5
  • Han Zhao
    • 1
  1. 1.Provincial Key Laboratory of Agrobiology, Institute of BiotechnologyJiangsu Academy of Agricultural SciencesNanjingChina
  2. 2.Nanjing Agricultural UniversityNanjingChina
  3. 3.National Key Laboratory of Plant Molecular GeneticsShanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
  4. 4.Department of Crop SciencesUniversity of Illinois at Urbana-ChampaignUrbana-ChampaignUSA
  5. 5.Nanjing Institute of Vegetable SciencesNanjingChina

Personalised recommendations