Plant Molecular Biology Reporter

, Volume 34, Issue 6, pp 1167–1180 | Cite as

Differential Impact of Acclimation and Acute Water Deprivation in the Expression of Key Transcription Factors in Soybean Roots

  • Fábia Guimarães-Dias
  • Anna C. Neves-Borges
  • Alessandra J. Conforte
  • Leonardo Giovanella-Kampmann
  • André V. J. Ferreira
  • Regina M. S. Amorim
  • Magda A. Benevent
  • Maria Eugênia Lisei de Sá
  • Rosilene O. Mesquita
  • Fabiana A. Rodrigues
  • Alexandre L. Nepomuceno
  • Eduardo Romano
  • Marcelo E. Loureiro
  • Maria Fátima Grossi-de-Sá
  • Márcio Alves-Ferreira
Original Paper


Soybean (Glycine max) is one of the major world commodities. In order to increase the soybean yields, it has been searched drought-tolerant cultivars, once the drought is the major constraint to soybean grown. Therefore, it is crucial to elucidate the molecular mechanisms associated with drought tolerance. Here, the in silico approach allowed us to identify 12 genes belonging to six different transcription factor families in soybean that have been associated with key events on drought response. The expression pattern of each gene was investigated by qPCR in root samples of drought-sensitive and drought-tolerant cultivars undergoing drought stress in pot-based (PSys) and hydroponic (HSys) cultivation systems. GmaxMYC2-like 2 was induced under abrupt drought conditions in HSys in both cultivars, whereas GmaxAREB1-like 1 and GmaxDREB2A-like were highly induced only in the PSys. However, GmaxMYB2-like 1, GmaxMYB2-like 2, GmaxRD26/NAC-like 1, GmaxRD26/NAC-like 2, GmaxAREB1-like 2, and GmaxDREB1A-like were upregulated in both systems, while the GmaxHB6-like and GmaxHB13-like are repressed under all of the investigated conditions. Exogenous abscisic acid (ABA) treatment was used to identify those genes belonging to the ABA-dependent drought response. The genes identified in this work have potential application for the improvement of drought resistance in soybean and markers for breeding programs.


Drought adaptation Glycine max Marker assistance selection Transcription factors Water deficit 



abscisic acid


ABA dependent


ABA independent


ABA-responsive transcriptional factors


ABA-responsive element binding/ABRE-binding protein




basic leucine zipper


dehydration-responsive element binding


homeobox domain HD-zip


hydroponic system


myeloblastosis oncogene


myelocytomatosis oncogene


nitrogene assimilation control protein


pot-based system

BR 16

sensitive cultivar

Embrapa 48

tolerant cultivar


water potential



We thank Durvalina Felix for the technical support. This work was part of Guimarães-Dias’s PhD research in Genetics, at the Department of Genetics of the Universidade Federal do Rio de Janeiro (UFRJ), and was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; M. Alves-Ferreira) and the Fundação de Amparo à Pesquisa do Rio de Janeiro (FAPERJ; M. Alves-Ferreira). The graduate PhD scholarship of F. Guimarães-Dias was granted by CNPq.

Authors’ Contributions

MA-F, ACNB, and FGD planned and supervised the study. MA-F, ACNB, and FGD contributed to the design and execution of the experiments and drafted the manuscript. LGK and AJC performed the expression analysis in the ABA samples. RMSA, MELS, AVJF, FGD, MAB, and ER contributed to the RNA extraction and expression analysis in the drought stress samples. ROM and MEL contributed to the development of the PSys experiment. FAR and AN contributed to the development of the HSys experiment. MAF, ACNB, and FGD contributed to the interpretation of the data and provided intellectual input. AN and MFGDS revised the manuscript and financial support. All of the authors have read and approved the final manuscript.

Compliance with Ethical Standards

Competing Interests

The authors declare that they have no competing interests.

Supplementary material

11105_2016_993_Fig4_ESM.jpg (799 kb)
Fig. S1

Digital expression profiles of the DTFGs that were submitted to treatment with ABA and drought stress in Arabidopsis. This analysis used available data from a microarray of the model plant A. thaliana and ATH1:22 K; the intensity of the red color is equivalent to increases in gene expression in response to drought stress. The increase in the intensity of the green color is equivalent to the increase in the gene repression in response to drought stress. The solid black color indicates no induction or repression under drought stress conditions in Genevestigator program: (JPEG 799 kb)

11105_2016_993_Fig5_ESM.jpg (1 mb)
Fig. S2

Strategy to search for TFRDs that are involved in the soybean response to water deficit. (JPEG 1041 kb)

11105_2016_993_MOESM1_ESM.doc (54 kb)
Table S1 Primer sequences that were used in the RT-qPCR and the amplicon lengths. (DOC 54 kb)
11105_2016_993_MOESM2_ESM.doc (37 kb)
Table S2 Description of the Cis-regulatory elements that were responsive to drought stress and ABA present in the transcription factors that were responsive to drought. Note: The symbol W was used in addition to A or T; the symbol R was used in addition to A or G; the symbol Y was used in addition to C or T; the symbol K was used in addition to G or T; and the symbol N was used in additional to A, C, G or T. (DOC 37 kb)
11105_2016_993_MOESM3_ESM.docx (843 kb)
Table S3 Frequency of the Cis-regulatory elements present in promoters of the transcription factors responsive to drought. Note: All of the analyzed promoter sequences were 1000 bp, and POBO was run with the following parameters: Number of pseudo-clusters 1000 length of the background promoter 1000 bp, and number of bootstraps 1000. Calculated t-test using the link online at the GraphPad website: P < 0.0001. The symbol W was used in addition to A or T, and the symbol N was used in additional to A, C, G or T. (DOCX 842 kb)


  1. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in Abscisic acid signaling. Plant Cell Online 15:63–78CrossRefGoogle Scholar
  2. Andersen C, Jensen J, Orntoft T (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250CrossRefPubMedGoogle Scholar
  3. Aubert Y, Leba L-J, Cheval C, Ranty B, Vavasseur A, Aldon D, Galaud J-P (2011) Involvement of RD20, a member of caleosin family, in ABA-mediated regulation of germination in Arabidopsis thaliana. Plant Signal Behav 6:538–540CrossRefPubMedPubMedCentralGoogle Scholar
  4. Avramova Z (2015) Transcriptional ‘memory’ of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes. Plant J 83:149–159CrossRefPubMedGoogle Scholar
  5. Bu Q et al. (2008) Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res 18:756–767CrossRefPubMedGoogle Scholar
  6. Busk PK, Pagès M (1998) Regulation of abscisic acid-induced transcription. Plant Mol Biol 37:425–435CrossRefPubMedGoogle Scholar
  7. Casagrande EC, et al. (2001) Expressão gênica diferencial durante déficit hídrico em soja. Rev Bras Fisiol Veg 13:168–184CrossRefGoogle Scholar
  8. Clemente TE, Cahoon EB (2009) Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiol 151:1030–1040. doi: 10.1104/pp.109.146282 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Comlekcioglu N, Simsek M (2011) Effects of deficit irrigation on yield and yield components of vegetable soybean Glycine max L. (Merr.) in semi-arid conditions. Afr J Biotechnol 10:6227–6234Google Scholar
  10. Cowan IR (1965) Transport of water in the soil-plant-atmosphere system. J Appl Ecol 2:221–239CrossRefGoogle Scholar
  11. Crandall K, Lagergren J, Simonsen M, Mailund T, Pedersen C (2008) Rapid neighbour-joining. In: Algorithms in bioinformatics, vol 5251. Lecture notes in computer science. Springer Berlin/Heidelberg, pp 113–122. doi: 10.1007/978-3-540-87361-7_10
  12. de Paiva Rolla AA et al. (2014) Phenotyping soybean plants transformed with rd29A:AtDREB1A for drought tolerance in the greenhouse and field Transgenic. Research 23:75–87. doi: 10.1007/s11248-013-9723-6 Google Scholar
  13. Ding Y, Fromm M, Avramova Z (2012) Multiple exposures to drought 'train' transcriptional responses in Arabidopsis. Nat Commun 3 doi: 10.1038/ncomms1732
  14. Ding Y, Liu N, Virlouvet L, Riethoven JJ, Fromm M, Avramova Z (2013) Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biol 13:1–11. doi: 10.1186/1471-2229-13-229
  15. Doyle JJ, Egan AN (2010) Dating the origins of polyploidy events. New Phytol 186:73–85. doi: 10.1111/j.1469-8137.2009.03118.x CrossRefPubMedGoogle Scholar
  16. Fan CM, Wang X, Wang YW, Hu RB, Zhang XM, Chen JX, Fu YF (2013) Genome-wide expression analysis of soybean MADS genes showing potential function in the seed development. PLoS ONE 8:e62288. doi: 10.1371/journal.pone.0062288
  17. Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72(4):673–689CrossRefPubMedGoogle Scholar
  18. Fehr W, Caviness C (1977) Stages of soybean development. Iowa State University, Ames, IAGoogle Scholar
  19. Ferreira Neto JRC, Pandolfi V, Guimaraes FCM, Benko-Iseppon AM, Romero C, Silva RLDO, Rodrigues FA, Abdelnoor RV, Nepomuceno AL, Kido EA (2013) Early transcriptional response of soybean contrasting accessions to root dehydration. PLoS One 8(12):e83466CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fujimoto R, Sasaki T, Ishikawa R, Osabe K, Kawanabe T, Dennis ES (2012) Molecular mechanisms of epigenetic variation in plants. Int J Mol Sci 13(8):9900–9922CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fujita M et al. (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39:863–876CrossRefPubMedGoogle Scholar
  22. Guimarães-Dias F, Neves-Borges AC, Viana AAB, Mesquita RO, Romano E, Grossi-de-Sá MF, Nepomuceno AL, Loureiros ME, Alves-Ferreira M (2012) Expression analysis in response to drought stress in soybean: shedding light on the regulation of metabolic pathway genes. Genet Mol Biol 35(1):222–232CrossRefPubMedPubMedCentralGoogle Scholar
  23. Harb A, Krishnan A, Ambavaram MMR, Pereira A (2010) Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol 154(3):1254–1271. doi: 10.1104/pp.110.161752 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19CrossRefPubMedPubMedCentralGoogle Scholar
  25. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27(1):297–300CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hoque TS, Hossain MA, Mostofa MG, Burritt DJ, Fujita M (2016) Signalling roles of methylglyoxal and the involvement of the glyoxalase system in plant abiotic stress responses and tolerance. In: Plant-Environment Interaction. John Wiley & Sons, Ltd, pp 311–326Google Scholar
  27. Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinforma 2008Google Scholar
  28. Hu R, Fan C, Li H, Zhang Q, Fu Y-F (2009) Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol Biol 10(1):93CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hussain SS, Kayani MA, Amjad M (2011) Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnol Prog 27(2):297–306. doi: 10.1002/btpr.514 CrossRefPubMedGoogle Scholar
  30. Kankainen M, Holm L (2004) POBO, transcription factor binding site verification with bootstrapping. Nucleic Acids Res 32:W222–W229CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kazan K, Manners JM (2013) MYC2: the master in action. Mol Plant 6:686–703CrossRefPubMedGoogle Scholar
  32. Kilian J, Peschke F, Berendzen KW, Harter K, Wanke D (2012) Prerequisites, performance and profits of transcriptional profiling the abiotic stress response. Biochim Biophys Acta Gene Regul Mech 1819(2):166–175. doi: 10.1016/j.bbagrm.2011.09.005 CrossRefGoogle Scholar
  33. Kim J-M, Sasaki T, Ueda M, Sako K, Seki M (2015) Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Front Plant Sci 6:114. doi: 10.3389/fpls.2015.00114 PubMedPubMedCentralGoogle Scholar
  34. Kulcheski FR, Marcelino-Guimaraes FC, Nepomuceno AL, Abdelnoor RV, Margis R (2010) The use of microRNAs as reference genes for quantitative polymerase chain reaction in soybean. Anal Biochem 406(2):185–192CrossRefPubMedGoogle Scholar
  35. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  36. Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2011) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res. doi: 10.1093/dnares/dsr015 Google Scholar
  37. Lorenzo O, Chico JM, Sánchez-Serrano JJ, Solano R (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different Jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16:1938–1950CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109(1):7–13. doi: 10.1104/pp.109.1.7 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Marcolino-Gomes J, Rodrigues FA, Neves Oliveira MC, Boucas Farias JR, Neumaier N, Abdelnoor RV, Marcelino-Guimaraes FC, Nepomuceno AL (2013) Expression patterns of GmAP2/EREB-like transcription factors involved in soybean responses to water deficit. PLoS One 8(5):e62294. doi: 10.1371/journal.pone.0062294 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Martins PK, Jordao BQ, Yamanaka N, Farias JRB, Beneventi MA, Binneck E, Fuganti R, Stolf R, Nepomuceno AL (2008) Differential gene expression and mitotic cell analysis of the drought tolerant soybean (Glycine max L. Merrill Fabales, Fabaceae) cultivar MG/BR46 (Conquista) under two water deficit induction systems. Genet Mol Biol 31(2):512–521CrossRefGoogle Scholar
  41. Mayer Weber RL, Wiebke-Strohm B, Bredemeier C, Margis-Pinheiro M, de Brito GG, Rechenmacher C, Bertagnolli PF, Lisei de Sa ME, Campos MdA, Santos de Amorim RM, Beneventi MA, Margis R, Grossi-de-Sa MF, Bodanese-Zanettini MH (2014) Expression of an osmotin-like protein from Solanum nigrum confers drought tolerance in transgenic soybean. Bmc Plant Biol 14. doi:10.1186/s12870–014-0343-yGoogle Scholar
  42. Miyamoto K, Nishizawa Y, Minami E, Nojiri H, Yamane H, Okada K (2015) Overexpression of the bZIP transcription factor OsbZIP79 suppresses the production of diterpenoid phytoalexin in rice cells. J Plant Physiol 173:19–27. doi: 10.1016/j.jplph.2014.09.001 CrossRefPubMedGoogle Scholar
  43. Munns R, James RA, Sirault XRR, Furbank RT, Jones HG (2010) New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. J Exp Bot 61(13):3499–3507CrossRefPubMedGoogle Scholar
  44. Mutava RN, Prince SJK, Syed NH, Song L, Valliyodan B, Chen W, Nguyen HT (2015) Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress. Plant Physiol Biochem 86:109–120. doi: 10.1016/j.plaphy.2014.11.010 CrossRefPubMedGoogle Scholar
  45. Nakashima K, Fujita Y, Katsura K, Maruyama K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Transcriptional regulation of ABI3-and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. Plant Mol Biol 60(1):51–68CrossRefPubMedGoogle Scholar
  46. Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:170. doi: 10.3389/fpls.2014.00170 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Narusaka Y et al. (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses the. Plant J 34:137–148CrossRefPubMedGoogle Scholar
  48. Neves-Borges AC et al. (2012) Expression pattern of drought stress marker genes in soybean roots under two water deficit systems. Genet Mol Biol 35:212–221CrossRefPubMedPubMedCentralGoogle Scholar
  49. Osakabe Y, Osakabe K, Shinozaki K, Tran L-SP (2014) Response of plants to water stress. Front Plant Sci 5:86. doi: 10.3389/fpls.2014.00086 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Oya T, Nepomuceno AL, Neumaier N, Farias JRB, Tobita S, Ito O (2004) Drought tolerance characteristics of Brazilian soybean cultivars—evaluation and characterization of drought tolerance of various Brazilian soybean cultivars in the field. Plant Prot Sci 7(2):129–137. doi: 10.1626/pps.7.129 CrossRefGoogle Scholar
  51. Pandey A, Misra P, Bhambhani S, Bhatia C, Trivedi PK (2014) Expression of Arabidopsis MYB transcription factor, AtMYB111, in tobacco requires light to modulate flavonol content. Sci Report 4:5018. doi: 10.1038/srep05018 CrossRefGoogle Scholar
  52. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST (c)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9):e36. doi: 10.1093/nar/30.9.e36 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Qiao Z, Li C-L, Zhang W (2016) WRKY1 regulates stomatal movement in drought-stressed Arabidopsis thaliana Plant Mol Biol:1–13Google Scholar
  54. Sahu P, Pandey G, Sharma N, Puranik S, Muthamilarasan M, Prasad M (2013) Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Rep 32(8):1151–1159. doi: 10.1007/s00299-013-1462-x CrossRefPubMedGoogle Scholar
  55. Savitri E, Basuki N, Aini N, Arumingtyas E (2013) Identification and characterization drought tolerance of gene LEA-D11 soybean (Glycine max L. Merr) based on PCR-sequencing. Am J Mol Biol 3:32–37. doi: 10.4236/ajmb.2013.31004 CrossRefGoogle Scholar
  56. Schmutz J, Cannon SB, Schlueter J, Ma JX, Mitros T, Nelson W, Hyten DL, Song QJ, Thelen JJ, Cheng JL, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu SQ, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du JC, Tian ZX, Zhu LC, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463(7278):178–183CrossRefPubMedGoogle Scholar
  57. Shinozaki K, Yamaguchi-Shinozaki K (1996) Molecular responses to drought and cold stress. Curr Opin Biotechnol 7:161–167CrossRefPubMedGoogle Scholar
  58. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58(2):221–227. doi: 10.1093/jxb/erl164 CrossRefPubMedGoogle Scholar
  59. Sitnikova T, Rzhetsky A, Nei M (1995) Interior-branched and bootstrap tests of phylogenetic trees. Mol Biol Evol 12(2):319–333PubMedGoogle Scholar
  60. Stolf-Moreira R, Medri M, Neumaier N, Lemos N, Pimenta J, Tobita S, Brogin R, Marcelino-Guimarães F, Oliveira M, Farias J, Abdelnoor R, Nepomuceno A (2010b) Soybean physiology and gene expression during drought. Genet Mol Res 5:1946–1956CrossRefGoogle Scholar
  61. Stolf-Moreira R, Lemos E, Carareto-Alves L, Marcondes J, Pereira S, Rolla A, Pereira R, Neumaier N, Binneck E, Abdelnoor R, de Oliveira M, Marcelino F, Farias J, Nepomuceno A (2011) Transcriptional profiles of roots of different soybean genotypes subjected to drought stress. Plant Mol Biol Report 29(1):19–34. doi: 10.1007/s11105-010-0203-3 CrossRefGoogle Scholar
  62. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599CrossRefPubMedGoogle Scholar
  63. Texeira LR, de Lucca E, Braccini A, Sperandio D, Scapim CA, Schuster I, Vigano J (2008) Evaluation of soybean cultivars regarding tolerance to water stress in substrat containing polyethylene glycol. Acta Sci Agron 30(2):217–223CrossRefGoogle Scholar
  64. Thao NP, Tran L-SP (2012) Potentials toward genetic engineering of drought-tolerant soybean. Crit Rev Biotechnol 32(4):349–362. doi: 10.3109/07388551.2011.643463 CrossRefPubMedGoogle Scholar
  65. Tran L-S, Mochida K (2010) Functional genomics of soybean for improvement of productivity in adverse conditions. Funct Integr Genomics 10(4):447–462. doi: 10.1007/s10142-010-0178-z CrossRefPubMedGoogle Scholar
  66. Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51(11):1821–1839. doi: 10.1093/pcp/pcq156 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAM (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:W71–W74CrossRefPubMedPubMedCentralGoogle Scholar
  68. Vadez V (2014) Root hydraulics: the forgotten side of roots in drought adaptation. Field Crop Res 165:15–24. doi: 10.1016/j.fcr.2014.03.017 CrossRefGoogle Scholar
  69. Vidal RO, do Nascimento LC, Mondego JMC, Pereira GAG, Carazzolle MF (2012) Identification of SNPs in RNA-seq data of two cultivars of Glycine max (soybean) differing in drought resistance. Genet Mol Biol 35(1 Suppl):331–334. doi: 10.1590/s1415-47572012000200014 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Wang H et al. (2012) Expression of an apoplast-localized BURP-domain protein from soybean (GmRD22) enhances tolerance towards abiotic stress plant. Cell Environ 35:1932–1947CrossRefGoogle Scholar
  71. Xu Z-S, Chen M, Li L-C, Ma Y-Z (2011) Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol 53(7):570–585. doi: 10.1111/j.1744-7909.2011.01062.x CrossRefPubMedGoogle Scholar
  72. Yamaguchi-Shinozaki K, Shinozaki K (1993) The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol Gen Genet MGG 238:17–25. doi: 10.1007/bf00279525 PubMedGoogle Scholar
  73. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803CrossRefPubMedGoogle Scholar
  74. Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133–139. doi: 10.1016/j.pbi.2014.07.009 CrossRefPubMedGoogle Scholar
  75. Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12(8):1047–1064. doi: 10.1089/cmb.2005.12.1047 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Fábia Guimarães-Dias
    • 1
  • Anna C. Neves-Borges
    • 2
  • Alessandra J. Conforte
    • 1
  • Leonardo Giovanella-Kampmann
    • 1
  • André V. J. Ferreira
    • 4
  • Regina M. S. Amorim
    • 4
  • Magda A. Benevent
    • 4
  • Maria Eugênia Lisei de Sá
    • 4
  • Rosilene O. Mesquita
    • 6
  • Fabiana A. Rodrigues
    • 5
  • Alexandre L. Nepomuceno
    • 5
  • Eduardo Romano
    • 4
  • Marcelo E. Loureiro
    • 3
  • Maria Fátima Grossi-de-Sá
    • 4
  • Márcio Alves-Ferreira
    • 1
  1. 1.Department of Genetics, Instituto de BiologiaUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  2. 2.Department of BotanyUniversidade Federal do Estado do Rio de Janeiro (UNIRIO)Rio de JaneiroBrazil
  3. 3.Plant Biology DepartmentUniversidade Federal de Viçosa (UFV)ViçosaBrazil
  4. 4.Genetic Resources and Biotechnology (CENARGEN)BrasíliaBrazil
  5. 5.Embrapa Soybean, Distrito de WartaLondrinaBrazil
  6. 6.Department of FitotecniaUniversidade Federal do Ceará (UFC)CearáBrazil

Personalised recommendations