Advertisement

Plant Molecular Biology Reporter

, Volume 34, Issue 1, pp 15–28 | Cite as

Late Embryogenesis Abundant (LEA) Gene Family in Maize: Identification, Evolution, and Expression Profiles

  • X. Li
  • J. Cao
Original Paper

Abstract

Late embryogenesis abundant (LEA) proteins are identified as a large and highly diverse group of polypeptides accumulating in response to cellular dehydration in many organisms. However, there are only very limited reports of this protein family in maize until this study. In the present paper, we identified 32 LEA genes in maize. A total of 83 LEA proteins including 51 members in Arabidopsis and 32 putative members in maize were classified into nine groups. Gene organization and motif compositions of the LEA members are highly conserved in each of the groups, indicative of their functional conservation. The predicted ZmLEA genes were non-random distributed across chromosomes, and transposition event and segmental duplication contributed to the expansion of the LEA gene family in maize. Some abiotic stress-responsive cis-elements were also found in the promoters of ZmLEA genes. Microarray expression analyses revealed different accumulation patterns of ZmLEA family members. Moreover, some members of ZmLEAs were regulated under IAA and some abiotic stresses. This study will provide comprehensive information for maize LEA gene family and may pave the way for deciphering their functions in further studies.

Keywords

Expression profiles Evolution Late embryogenesis abundant (LEA) protein Maize 

Abbreviations

DAP

Day after planting

GRAVY

Grand average hydropathy

LEA

Late embryogenesis abundant

MEME

Multiple EM for motif elicitation

NJ

Neighbor joining

TSS

Transcription start site

Notes

Acknowledgments

This project is supported by grants from the National Science Foundation of China (31100923), the National Science Foundation of Jiangsu Province (BK2011467), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Jiangsu University “Youth Backbone Teacher Training Project” (2012–2016) to J.C.

Competing Interests

The authors declare that they have no competing interests.

Supplementary material

11105_2015_901_MOESM1_ESM.doc (31 kb)
Table S1 Primers used in this study. (DOC 31 kb)

References

  1. Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34(Web Server issue):W369–W373PubMedCentralCrossRefPubMedGoogle Scholar
  2. Battaglia M, Covarrubias AA (2013) Late embryogenesis abundant (LEA) proteins in legumes. Front Plant Sci 4:190PubMedCentralCrossRefPubMedGoogle Scholar
  3. Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16(7):1667–1678PubMedCentralCrossRefPubMedGoogle Scholar
  4. Candat A, Paszkiewicz G, Neveu M, Gautier R, Logan DC, Avelange-Macherel MH, Macherel D (2014) The ubiquitous distribution of late embryogenesis abundant proteins across cell compartments in Arabidopsis offers tailored protection against abiotic stress. Plant Cell 26(7):3148–3166PubMedCentralCrossRefPubMedGoogle Scholar
  5. Cao J (2012) The pectin lyases in Arabidopsis thaliana: evolution, selection and expression profiles. PLoS One 7(10):e46944PubMedCentralCrossRefPubMedGoogle Scholar
  6. Cao J, Shi F (2012a) Evolution of the RALF gene family in plants: Gene duplication and selection patterns. Evol Bioinfor Online 8:271–292CrossRefGoogle Scholar
  7. Cao J, Shi F (2012b) Dynamics of arginase gene evolution in metazoans. J Biomol Struct Dyn 30(4):407–418CrossRefPubMedGoogle Scholar
  8. Cao J, Shi F, Liu X, Huang G, Zhou M (2010) Phylogenetic analysis and evolution of aromatic amino acid hydroxylase. FEBS Lett 584(23):4775–4782CrossRefPubMedGoogle Scholar
  9. Cao J, Huang J, Yang Y, Hu X (2011) Analyses of the oligopeptide transporter gene family in poplar and grape. BMC Genomics 12:465PubMedCentralCrossRefPubMedGoogle Scholar
  10. Chen Y, Cao J (2014) Comparative genomic analysis of the Sm gene family in rice and maize. Gene 539(2):238–249CrossRefPubMedGoogle Scholar
  11. Chen Y, Hao X, Cao J (2014) Small auxin upregulated RNA (SAUR) gene family in maize: identification, evolution, and its phylogenetic comparison with Arabidopsis, rice, and sorghum. J Integr Plant Biol 56(2):133–150CrossRefPubMedGoogle Scholar
  12. Colmenero-Flores JM, Moreno LP, Smith CE, Covarrubias AA (1999) Pvlea-18, a member of a new late-embryogenesis-abundant protein family that accumulates during water stress and in the growing regions of well-irrigated bean seedlings. Plant Physiol 120(1):93–104PubMedCentralCrossRefPubMedGoogle Scholar
  13. Dalal M, Tayal D, Chinnusamy V, Bansal KC (2009) Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. J Biotechnol 139(2):137–145CrossRefPubMedGoogle Scholar
  14. Dosztányi Z, Csizmók V, Tompa P, Simon I (2005) The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 347(4):827–839CrossRefPubMedGoogle Scholar
  15. Du D, Zhang Q, Cheng T, Pan H, Yang W, Sun L (2013) Genome-wide identification and analysis of late embryogenesis abundant (LEA) genes in Prunus mume. Mol Biol Rep 40(2):1937–1946CrossRefPubMedGoogle Scholar
  16. Duan J, Cai W (2012) OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. PLoS One 7(9):e45117Google Scholar
  17. Dure L 3rd (1993) A repeating 11-mer amino acid motif and plant desiccation. Plant J 3(3):363–369CrossRefPubMedGoogle Scholar
  18. Dure L 3rd, Greenway SC, Galau GA (1981) Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20(14):4162–4168CrossRefPubMedGoogle Scholar
  19. Dure L 3rd, Crouch M, Harada J, Ho TH, Mundy J, Quatrano R, Thomas T, Sung ZR (1989) Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol Biol 12(5):475–486CrossRefPubMedGoogle Scholar
  20. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797PubMedCentralCrossRefPubMedGoogle Scholar
  21. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res 38(Database issue):D211–D222PubMedCentralCrossRefPubMedGoogle Scholar
  22. Gao C, Liu Y, Wang C, Zhang K, Wang Y (2014) Expression profiles of 12 late embryogenesis abundant protein genes from Tamarix hispida in response to abiotic stress. ScientificWorldJournal 2014:868391PubMedCentralPubMedGoogle Scholar
  23. Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275(8):5668–5674CrossRefPubMedGoogle Scholar
  24. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31(13):3784–3788PubMedCentralCrossRefPubMedGoogle Scholar
  25. Gaut BS, Doebley JF (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci U S A 94(13):6809–6814PubMedCentralCrossRefPubMedGoogle Scholar
  26. Gaut BS, Le Thierry d’Ennequin M, Peek AS, Sawkins MC (2000) Maize as a model for the evolution of plant nuclear genomes. Proc Natl Acad Sci U S A 97(13):7008–7015PubMedCentralCrossRefPubMedGoogle Scholar
  27. Hand SC, Menze MA, Toner M, Boswell L, Moore D (2011) LEA proteins during water stress: not just for plants anymore. Annu Rev Physiol 73:115–134CrossRefPubMedGoogle Scholar
  28. Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217(2):290–298PubMedGoogle Scholar
  29. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27(1):297–300PubMedCentralCrossRefPubMedGoogle Scholar
  30. Hincha DK, Thalhammer A (2012) LEA proteins: IDPs with versatile functions in cellular dehydration tolerance. Biochem Soc Trans 40(5):1000–1003CrossRefPubMedGoogle Scholar
  31. Hundertmark M, Hincha DK (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118PubMedCentralCrossRefPubMedGoogle Scholar
  32. Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403CrossRefPubMedGoogle Scholar
  33. Karanth S, Lall SP, Denovan-Wright EM, Wright JM (2009) Differential transcriptional modulation of duplicated fatty acid-binding protein genes by dietary fatty acids in zebrafish (Danio rerio): evidence for subfunctionalization or neofunctionalization of duplicated genes. BMC Evol Biol 9:219PubMedCentralCrossRefPubMedGoogle Scholar
  34. Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125(3):1198–1205PubMedCentralCrossRefPubMedGoogle Scholar
  35. Kikawada T, Nakahara Y, Kanamori Y, Iwata K, Watanabe M, McGee B, Tunnacliffe A, Okuda T (2006) Dehydration-induced expression of LEA proteins in an anhydrobiotic chironomid. Biochem Biophys Res Commun 348(1):56–61CrossRefPubMedGoogle Scholar
  36. Koag MC, Wilkens S, Fenton RD, Resnik J, Vo E, Close TJ (2009) The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. Plant Physiol 150(3):1503–1514PubMedCentralCrossRefPubMedGoogle Scholar
  37. Kosová K, Vítámvás P, Prášil IT (2014) Wheat and barley dehydrins under cold, drought, and salinity—what can LEA-II proteins tell us about plant stress response? Front Plant Sci 5:343PubMedCentralPubMedGoogle Scholar
  38. Le Hir H, Nott A, Moore MJ (2003) How introns influence and enhance eukaryotic gene expression. Trends Biochem Sci 28(4):215–220CrossRefPubMedGoogle Scholar
  39. Liang J, Zhou M, Zhou X, Jin Y, Xu M, Lin J (2013) JcLEA, a novel LEA-like protein from Jatropha curcas, confers a high level of tolerance to dehydration and salinity in Arabidopsis thaliana. PLoS One 8(12):e83056PubMedCentralCrossRefPubMedGoogle Scholar
  40. Liu Y, Chakrabortee S, Li R, Zheng Y, Tunnacliffe A (2011) Both plant and animal LEA proteins act as kinetic stabilisers of polyglutamine-dependent protein aggregation. FEBS Lett 585(4):630–634CrossRefPubMedGoogle Scholar
  41. Liu Y, Wang L, Xing X, Sun L, Pan J, Kong X, Zhang M, Li D (2013) ZmLEA3, a multifunctional group 3 LEA protein from maize (Zea mays L.), is involved in biotic and abiotic stresses. Plant Cell Physiol 54(6):944–959CrossRefPubMedGoogle Scholar
  42. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C (T)) Method. Methods 25(4):402–408CrossRefPubMedGoogle Scholar
  43. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290(5494):1151–1155CrossRefPubMedGoogle Scholar
  44. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39(Database issue):D225–D229PubMedCentralCrossRefPubMedGoogle Scholar
  45. Marcotte WR Jr, Russell SH, Quatrano RS (1989) Abscisic acid-responsive sequences from the em gene of wheat. Plant Cell 1(10):969–976PubMedCentralCrossRefPubMedGoogle Scholar
  46. Mascarenhas D, Mettler IJ, Pierce DA, Lowe HW (1990) Intron-mediated enhancement of heterologous gene expression in maize. Plant Mol Biol 15(6):913–920CrossRefPubMedGoogle Scholar
  47. Moore G, Foote T, Helentjaris T, Devos K, Kurata N, Gale M (1995) Was there a single ancestral cereal chromosome? Trends Genet 11(3):81–82CrossRefPubMedGoogle Scholar
  48. Mouillon JM, Gustafsson P, Harryson P (2006) Structural investigation of disordered stress proteins. Comparison of full-length dehydrins with isolated peptides of their conserved segments. Plant Physiol 141(2):638–650PubMedCentralCrossRefPubMedGoogle Scholar
  49. Oliveira E, Amara I, Bellido D, Odena MA, Domínguez E, Pagès M, Goday A (2007) LC-MSMS identification of Arabidopsis thaliana heat-stable seed proteins: Enriching for LEA-type proteins by acid treatment. J Mass Spectrom 42(11):1485–1495CrossRefPubMedGoogle Scholar
  50. Olvera-Carrillo Y, Campos F, Reyes JL, Garciarrubio A, Covarrubias AA (2010) Functional analysis of the group 4 late embryogenesis abundant proteins reveals their relevance in the adaptive response during water deficit in Arabidopsis. Plant Physiol 154(1):373–390PubMedCentralCrossRefPubMedGoogle Scholar
  51. Olvera-Carrillo Y, Luis Reyes J, Covarrubias AA (2011) Late embryogenesis abundant proteins: versatile players in the plant adaptation to water limiting environments. Plant Signal Behav 6(4):586–589PubMedCentralCrossRefPubMedGoogle Scholar
  52. Prestridge DS (1991) SIGNAL SCAN: a computer program that scans DNA sequences for eukaryotic transcriptional elements. Comput Appl Biosci 7(2):203–206PubMedGoogle Scholar
  53. Rahman LN, Chen L, Nazim S, Bamm VV, Yaish MW, Moffatt BA, Dutcher JR, Harauz G (2010) Interactions of intrinsically disordered Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 with membranes—synergistic effects of lipid composition and temperature on secondary structure. Biochem Cell Biol 88(5):791–807CrossRefPubMedGoogle Scholar
  54. Raynal M, Guilleminot J, Gueguen C, Cooke R, Delseny M, Gruber V (1999) Structure, organization and expression of two closely related novel Lea (late-embryogenesis-abundant) genes in Arabidopsis thaliana. Plant Mol Biol 40(1):153–165CrossRefPubMedGoogle Scholar
  55. Reddy PS, Reddy GM, Pandey P, Chandrasekhar K, Reddy MK (2012) Cloning and molecular characterization of a gene encoding late embryogenesis abundant protein from Pennisetum glaucum: protection against abiotic stresses. Mol Biol Rep 39(6):7163–7174CrossRefPubMedGoogle Scholar
  56. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity and dynamics. Science 326(5956):1112–1115CrossRefPubMedGoogle Scholar
  57. Sekhon RS, Lin H, Childs KL, Hansey CN, Buell CR, de Leon N, Kaeppler SM (2011) Genome-wide atlas of transcription during maize development. Plant J 66(4):553–563CrossRefPubMedGoogle Scholar
  58. Shih MD, Lin SC, Hsieh JS, Tsou CH, Chow TY, Lin TP, Hsing YI (2004) Gene cloning and characterization of a soybean (Glycine max L.) LEA protein, GmPM16. Plant Mol Biol 56(5):689–703CrossRefPubMedGoogle Scholar
  59. Shih M, Hoekstra F, Hsing Y (2008) Late embryogenesis abundant proteins. Adv Bot Res 48:212–240Google Scholar
  60. Singh S, Cornilescu CC, Tyler RC, Cornilescu G, Tonelli M, Lee MS, Markley JL (2005) Solution structure of a late embryogenesis abundant protein (LEA14) from Arabidopsis thaliana, a cellular stress-related protein. Protein Sci 14(10):2601–2609PubMedCentralCrossRefPubMedGoogle Scholar
  61. Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18(1):207–208CrossRefPubMedGoogle Scholar
  62. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739PubMedCentralCrossRefPubMedGoogle Scholar
  63. Tolleter D, Jaquinod M, Mangavel C, Passirani C, Saulnier P, Manon S, Teyssier E, Payet N, Avelange-Macherel MH, Macherel D (2007) Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation. Plant Cell 19(5):1580–1589PubMedCentralCrossRefPubMedGoogle Scholar
  64. Tunnacliffe A, Wise MJ (2007) The continuing conundrum of LEA proteins. Naturwissenschaften 94(10):791–812CrossRefPubMedGoogle Scholar
  65. Wang XS, Zhu HB, Jin GL, Liu HL, Wu WR, Zhu J (2007) Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Sci 172:414–420CrossRefGoogle Scholar
  66. Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2(8):e718PubMedCentralCrossRefPubMedGoogle Scholar
  67. Wise MJ (2003) LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinf 4:52CrossRefGoogle Scholar
  68. Wolkers WF, McCready S, Brandt WF, Lindsey GG, Hoekstra FA (2001) Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim Biophys Acta 1544(1–2):196–206CrossRefPubMedGoogle Scholar
  69. Xu W, Jiao Y, Li R, Zhang N, Xiao D, Ding X, Wang Z (2014) Chinese wild-growing Vitis amurensis ICE1 and ICE2 encode MYC-type bHLH transcription activators that regulate cold tolerance in Arabidopsis. PLoS One 9(7):e102303PubMedCentralCrossRefPubMedGoogle Scholar
  70. Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10(2):88–94CrossRefPubMedGoogle Scholar
  71. Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C, Zhang J, Zhang Y, Li R, Xu Z, Li S, Li X, Zheng H, Cong L, Lin L, Yin J, Geng J, Li G, Shi J, Liu J, Lv H, Li J, Wang J, Deng Y, Ran L, Shi X, Wang X, Wu Q, Li C, Ren X, Wang J, Wang X, Li D, Liu D, Zhang X, Ji Z, Zhao W, Sun Y, Zhang Z, Bao J, Han Y, Dong L, Ji J, Chen P, Wu S, Liu J, Xiao Y, Bu D, Tan J, Yang L, Ye C, Zhang J, Xu J, Zhou Y, Yu Y, Zhang B, Zhuang S, Wei H, Liu B, Lei M, Yu H, Li Y, Xu H, Wei S, He X, Fang L, Zhang Z, Zhang Y, Huang X, Su Z, Tong W, Li J, Tong Z, Li S, Ye J, Wang L, Fang L, Lei T, Chen C, Chen H, Xu Z, Li H, Huang H, Zhang F, Xu H, Li N, Zhao C, Li S, Dong L, Huang Y, Li L, Xi Y, Qi Q, Li W, Zhang B, Hu W, Zhang Y, Tian X, Jiao Y, Liang X, Jin J, Gao L, Zheng W, Hao B, Liu S, Wang W, Yuan L, Cao M, McDermott J, Samudrala R, Wang J, Wong GK, Yang H (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3(2):e38PubMedCentralCrossRefPubMedGoogle Scholar
  72. Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64(3):643–651CrossRefPubMedGoogle Scholar
  73. Zhu B, Choi DW, Fenton R, Close TJ (2000) Expression of the barley dehydrin multigene family and the development of freezing tolerance. Mol Gen Genet 264(1–2):145–153CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Life SciencesJiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations