Plant Molecular Biology Reporter

, Volume 33, Issue 5, pp 1451–1463 | Cite as

Isolation and Functional Analysis of Chalcone Isomerase Gene from Purple-Fleshed Sweet Potato

  • Jinya Guo
  • Wei Zhou
  • Zhaoliang Lu
  • Hao Li
  • Haihang Li
  • Feng Gao
Original Paper


Chalcone isomerase (CHI, EC is one of the essential enzymes in the anthocyanin biosynthetic pathway catalyzing the stereospecific isomerization of chalcones into their corresponding (2S)-flavanones. A full-length cDNA of CHI (844 bp in length) was isolated from purple-fleshed sweet potato [Ipomoea batatas (L.) Lam] cv. Yamakawamurasaki, designated IbCHI, containing a 732-bp open reading frame encoding a 243 amino acid polypeptide. Sequence alignment showed that the coding region of IbCHI gene is highly homologous with CHIs from other plant species and has four conserved amino acid residues (Thr50, Tyr108, Asn115, and Ser192) essential for CHI active sites. Phylogenetic analysis revealed that IbCHI was clustered into type I CHI group. Southern blotting showed that there were multicopies of IbCHI gene in I. batatas genome and IbCHI gene showed significant restriction fragment length polymorphism among different I. batatas cultivars. Overexpression of the IbCHI gene in Arabidopsis tt5 mutant fully complemented the pigmentation phenotype of the seed coat, cotyledon, and hypocotyl, indicating that the IbCHI gene encoded a fully functional CHI protein for anthocyanin and proanthocyanidin biosynthesis. The expression patterns of IbCHI and other anthocyanin biosynthesis-related genes (IbCHS, IbF3H, IbDFR, and IbANS) matched the accumulation patterns of anthocyanin in the thick roots and mature storage roots of different cultivars of sweet potato. However, in the fibrous roots, only IbCHI expressed obviously higher in purple-fleshed cultivar than white-fleshed cultivar, while IbCHS and IbDFR exhibited the opposite expression trends, and IbF3H and IbANS expressed almost equally in purple- and white-fleshed cultivars. The findings suggest that IbCHI is a key enzyme in the anthocyanin biosynthetic pathway of sweet potato, which is responsible for the activation of anthocyanin biosynthesis in the early stage of root development.


Purple-fleshed sweet potato Anthocyanin Chalcone isomerase Gene expression 



This work was funded by China National Natural Science Foundation (31171601)


  1. Aza-González C, Herrera-Isidrón L, Núñez-Palenius HG, Martínez De La Vega O, Ochoa-Alejo N (2013) Anthocyanin accumulation and expression analysis of biosynthesis-related genes during chili pepper fruit development. Biol Plant 57:49–55. doi: 10.1007/s10535-012-0265-1 CrossRefGoogle Scholar
  2. Chen PN, Chu SC, Chiou LH, Kuo WH, Chiang CL, Hsieh YS (2006) Mulberry anthocyanins, cyanidin 3-rutinoside and cyanidin 3-glucoside, exhibited an inhibitory effect on the migration and invasion of a human lung cancer cell line. Cancer Lett 235:248–259. doi: 10.1016/j.canlet.2005.04.033 CrossRefPubMedGoogle Scholar
  3. Cheng H, Li L, Cheng S, Cao F, Wang Y, Yuan H (2011) Molecular cloning and function assay of a chalcone isomerase gene (GbCHI) from Ginkgo biloba. Plant Cell Rep 30:49–62. doi: 10.1007/s00299-010-0943-4 CrossRefPubMedGoogle Scholar
  4. Cretu GC, Morlock GE (2014) Analysis of anthocyanins in powdered berry extracts by planar chromatography linked with bioassay and mass spectrometry. Food Chem 146:104–112. doi: 10.1016/j.foodchem.2013.09.038 CrossRefPubMedGoogle Scholar
  5. Dixon RA, Blyden ER, Robhins MP, van Tunen AJ, Mol JN (1988) Comparative biochemistry of chalcone isomerases. Phytochemistry 27:2801–2808. doi: 10.1016/0031-9422(88)80666-6 CrossRefGoogle Scholar
  6. Dong X, Braun EL, Grotewold E (2001) Functional conservation of plant secondary metabolic enzymes revealed by complementation of Arabidopsis flavonoid mutants with maize genes. Plant Physiol 127:46–57. doi: 10.1104/pp. 127.1.46 PubMedCentralCrossRefPubMedGoogle Scholar
  7. Druka A, Kudrna D, Rostoks N, Brueggeman R, Von Wettstein D, Kleinhofs A (2003) Chalcone isomerase from rice (0ryza sativa) and barley (Hordeum vulgare): physical, genetic and mutation mapping. Gene 302:171–178. doi: 10.1016/S0378-1119(02)01105-8 CrossRefPubMedGoogle Scholar
  8. Felsenstein J (1992) Estimating effective population size from samplesof sequences: a bootstrap Monte Carlo integration method. Genet Res 60:209–220. doi: 10.1017/S0016672300030962 CrossRefPubMedGoogle Scholar
  9. Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53:814–827. doi: 10.1111/j.1365-313X.2007.03373.x CrossRefPubMedGoogle Scholar
  10. Grotewold E, Peterson T (1994) Isolation and characterization of a maize gene encoding chalcone flavonone isomerase. Mol Gen Genet 242:1–8. doi: 10.1007/BF00277341 PubMedGoogle Scholar
  11. Guo HW, Ling WH, Wang Q, Liu C, Hu Y, Xia M, Feng X, Xia X (2007) Effect of anthocyanin-rich extract from black rice on hyperlipidemia and insulin resistance in fructose-fed rats. Plant Food Hum Nutr 62:1–6. doi: 10.1007/s11130-006-0031-7 CrossRefGoogle Scholar
  12. Holton TA, Cornish E (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083. doi: 10.1105/tpc.7.7.1071 PubMedCentralCrossRefPubMedGoogle Scholar
  13. Jeong ST, Goto-Yamamoto N, Hashizume K, Esaka M (2008) Expression of multi-copy flavonoid pathway genes coincides with anthocyanin, flavonol and flavan-3-ol accumulation of grapevine. Vitis 47:135–140Google Scholar
  14. Jez JM, Noel JP (2002) Reaction mechanism of chalcone isomerase. pH dependence, diffusion control, and product binding differences. J Biol Chem 277:1361–1369. doi: 10.1074/jbc.M109224200 CrossRefPubMedGoogle Scholar
  15. Jez JM, Bowman ME, Dixon RA, Noel JP (2000) Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat Struct Biol 7:786–791. doi: 10.1038/79025 CrossRefPubMedGoogle Scholar
  16. Jez JM, Bowman ME, Noel JP (2002) Role of hydrogen bonds in the reaction mechanism of chalcone isomerase. Biochemistry 41:5168–5176. doi: 10.1021/bi0255266 CrossRefPubMedGoogle Scholar
  17. Kim SH, Hamada T (2005) Rapid and reliable method of extracting DNA and RNA from sweetpotato, Ipomoea batatas (L). Lam. Biotechnol Lett 27:1841–1845. doi: 10.1007/s10529-005-3891-2 CrossRefPubMedGoogle Scholar
  18. Kowalczyk E, Krzesinski P, Kura M, Szmigiel B, Blaszczyk J (2003) Anthocyanins in medicine. Pol J Pharmacol 55:699–702PubMedGoogle Scholar
  19. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245. doi: 10.1093/bioinformatics/17.12.1244 CrossRefPubMedGoogle Scholar
  20. Li F, Jin Z, Qu W, Zhao D, Ma F (2006) Cloning of a cDNA encoding the Saussurea medusa chalcone isomerase and its expression in transgenic tobacco. Plant Physiol Biochem 44:455–461. doi: 10.1016/j.plaphy.2006.08.006 CrossRefPubMedGoogle Scholar
  21. Li J, Li XD, Zhang Y, Zheng ZD, Qu ZY, Liu M, Zhu SH, Liu S, Wang M, Qu L (2013) Identification and thermal stability of purple-fleshed sweet potato anthocyanins in aqueous solutions with various pH values and fruit juices. Food Chem 136:1429–1434. doi: 10.1016/j.foodchem.2012.09.054 CrossRefPubMedGoogle Scholar
  22. Mano H, Ogasawara F, Sato K, Higo H, Minobe Y (2007) Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato. Plant Physiol 143:1252–1268. doi: 10.1104/pp. 106.094425 PubMedCentralCrossRefPubMedGoogle Scholar
  23. Mckhann HI, Hirsch AM (1994) Isolation of chalcone synthase and chalcone isomerase cDNAs from alfalfa (Medicago sativa L.): highest transcript levels occur in young roots and root tips. Plant Mol Biol 24:767–777. doi:  10.1007/BF00029858
  24. Mol J, Grotewold E, Koes R (1998) How genes paint flowers and seeds. Trends Plant Sci 3:212–217. doi: 10.1016/S1360-1385(98)01242-4 CrossRefGoogle Scholar
  25. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  26. Satué-Gracia MT, Heinonen N, Frankel EN (1997) Anthocyanins as antioxidants on human low density lipoprotein and lecithin liposome systems. J Agric Food Chem 45:3362–3367. doi: 10.1021/jf970234a CrossRefGoogle Scholar
  27. Shimada N, Aoki T, Sato S, Nakamura Y, Tabata S, Ayabe S (2003) A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy(iso)flavonoids in Lotus japonicus. Plant Physiol 131:941–951. doi: 10.1104/pp. 004820 PubMedCentralCrossRefPubMedGoogle Scholar
  28. Shoeva OY, Khlestkina EK, Berges H, Salina EA (2014) The homoeologous genes encoding chalcone–flavanone isomerase in Triticum aestivum L.: structural characterization and expression in different parts of wheat plant. Gene 538:334–341. doi: 10.1016/j.gene.2014.01.008 CrossRefPubMedGoogle Scholar
  29. Springob K, Nakajima J, Yamazaki M, Saito K (2003) Recent advances in the biosynthesis of anthocyanins. Nat Prod Rep 20:288–303. doi: 10.1039/b109542k CrossRefPubMedGoogle Scholar
  30. Van Tunen AJ, Koes RE, Spelt CE, Van der Krol AR, Stuitje AR, Mol JN (1988) Cloning of the two chalcone flavanone isomerase genes from Petunia hybrida: coordinate, light-regulated and differential expression of flavonoid genes. EMBO J 7:1257–1263PubMedCentralPubMedGoogle Scholar
  31. Wang H, Fan W, Li H, Yang J, Huang J, Zhang P (2013) Functional characterization of dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses. PLoS One 8:e78484. doi: 10.1371/journal.pone.0078484 PubMedCentralCrossRefPubMedGoogle Scholar
  32. Wei YZ, Hu FC, Hu GB, Li XJ, Huang XM, Wang HC (2011) Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of Litchi chinensis Sonn. PLoS One 6:e19455. doi: 10.1371/journal.pone.0019455 PubMedCentralCrossRefPubMedGoogle Scholar
  33. Weisel T, Baum M, Eisenbrand G, Dietrich H, Frank W, Stockis JP, Kulling S, Rüfer C, Johannes C, Janzowski C (2006) An anthocyanin/polyphenolic-rich fruit juice reduces oxidative DNA damage and increases glutathione level in healthy probands. Biotechnol J 1:388–397. doi: 10.1002/biot.200600004 CrossRefPubMedGoogle Scholar
  34. Wood AJ, Davies E (1994) A cDNA encoding chalcone isomerase from aged pea epicotyls. Plant Physiol 104:1465–1466. doi: 10.1104/pp. 104.4.1465 PubMedCentralCrossRefPubMedGoogle Scholar
  35. Wu DM, Lu J, Zheng YL, Zhou Z, Shan Q, Ma DF (2008) Purple sweet potato color repairs D-galactose-induced spatial learning and memory impairment by regulating the expression of synaptic proteins. Neurobiol Learn Mem 90:19–27. doi: 10.1016/j.nlm.2008.01.010 CrossRefPubMedGoogle Scholar
  36. Yang Y, Zhao G, Yue W, Zhang S, Gu C, Wu J (2013) Molecular cloning and gene expression differences of the anthocyanin biosynthesis-related genes in the red/green skin color mutant of pear (Pyrus communis L.). Tree Genet Genomes 9:1351–1360. doi: 10.1007/s11295-013-0644-6 CrossRefGoogle Scholar
  37. Yoshimoto M, Okuno S, Yoshinaga M, Yamakawa O, Yamaguchi M, Yamada J (1999) Antimutagenicity of sweetpotato (Ipomoea batatas) roots. Biosci Biotechnol Biochem 63:537–541. doi: 10.1271/bbb.63.537 CrossRefPubMedGoogle Scholar
  38. Yuan Y, Ma X, Shi Y, Tang D (2013) Isolation and expression analysis of six putative structural genes involved in anthocyanin biosynthesis in Tulipa fosteriana. Sci Hortic-Amst 153:93–102. doi: 10.1016/j.scienta.2013.02.008 CrossRefGoogle Scholar
  39. Zhao D, Tao J, Han C, Ge J (2012) Flower color diversity revealed by differential expression of flavonoid biosynthetic genes and flavonoid accumulation in herbaceous peony (Paeonia lactiflora Pall.). Mol Biol Rep 39:11263–11275. doi: 10.1007/s11033-012-2036-7 CrossRefPubMedGoogle Scholar
  40. Zhou W, Huang C, Gong Y, Feng Q, Gao F (2010) Molecular cloning and expression analysis of an ANS gene encoding anthocyanidin synthase from Purple-fleshed sweet potato [Ipomoea batatas(L.) Lam]. Plant Mol Biol Rep 28:112–121. doi: 10.1007/s11105-009-0133-0 CrossRefGoogle Scholar
  41. Zhou W, Gong Y, Lu X, Huang C, Gao F (2012) Molecular cloning and characterization of a flavonoid 3′-hydroxylase gene from purple-fleshed sweet potato (Ipomoea batatas). Mol Biol Rep 39:295–302. doi: 10.1007/s11033-011-0738-x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jinya Guo
    • 1
  • Wei Zhou
    • 2
  • Zhaoliang Lu
    • 1
  • Hao Li
    • 1
  • Haihang Li
    • 1
  • Feng Gao
    • 1
  1. 1.Guangdong Key Lab of Biotechnology for Plant Development, School of Life SciencesSouth China Normal UniversityGuangzhouPeople’s Republic of China
  2. 2.School of Agriculture and Food ScienceZhejiang Agriculture and Forest UniversityLinanPeople’s Republic of China

Personalised recommendations