Plant Molecular Biology Reporter

, Volume 33, Issue 4, pp 923–930 | Cite as

The Sophora Alopecuroid H + -PPase Gene SaVP1 Confers Multiple Abiotic Stress Tolerance in Arabidopsis

  • Yanqin Wang
  • Shuangxia Jin
  • Ling Min
  • Xin He
  • Yaoyao Li
  • Yi Zhu
  • Yichun Nie
  • Xianlong Zhang
  • Longfu Zhu
Original Paper


The physiological role of a vacuolar H+-PPase (SaVP1) from an eremophyte, Sophora alopecuroid, was evaluated through overexpressing in Arabidopsis. Overexpression of SaVP1 in Arabidopsis enhanced tolerance to drought and salt stresses and resulted in the up-regulation of several K+ and Ca2+ channel/ transporters genes, which showed a function similar to that of vacuolar H+-PPase from other plants. Moreover, the transgenic plants showed higher temperature tolerance than wild type plants, and had a higher seed yield. Overexpression of SaVP1 could improve the content of indole-3-acetic acid (IAA) in floral organs under high-temperature stress. Meanwhile, the application of IAA in low concentration led to higher fertility in the SaVP1-overexpressing plants under high temperature. These results indicate that SaVP1 might activate the auxin biosynthesis and signaling pathway in Arabidopsis to improve tolerance to heat. SaVP1 from an eremophyte could also be applied as a candidate gene for enhancing multiple stress tolerance in other plant species.


Vacuolar H+-PPase SaVP1 Sophora alopecuroid Abiotic stress Heat 



Superoxide dismutase






Indole-3-acetic acid



The work was funded by the Project from Ministry of Agriculture of China (2013ZX08005-004) and the open funds of the National Key Laboratory of Crop Genetic Improvement (200902).

Supplementary material

11105_2014_801_MOESM1_ESM.xlsx (13 kb)
Table S1 Primers used in this research. (XLSX 12 kb)
11105_2014_801_Fig5_ESM.jpg (2.1 mb)
Figure S1

The sequence of SaVP1 from Sophora alopecuroides. (JPEG 2116 kb)

11105_2014_801_Fig6_ESM.jpg (249 kb)
Figure S2

Relative transcript level of SaVP1 in leaves and roots of Sophora alopecuroides after 0.5 M NaCl treatment for 0h, 4 h, 8h, and 12h, respectively. (JPEG 248 kb)

11105_2014_801_Fig7_ESM.jpg (191 kb)
Figure S3

The biomass of the two transgenic lines and WT plants under the control condition and after drought and salt stress treatments. (JPEG 190 kb)


  1. Bassil E, Tajima H, Liang YC et al (2011) The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant Cell 23:3482–3497PubMedCentralPubMedCrossRefGoogle Scholar
  2. Catalá R, Santos E, Alonso JM et al (2003) Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell 15:2940–2951PubMedCentralPubMedCrossRefGoogle Scholar
  3. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743PubMedCrossRefGoogle Scholar
  4. Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3:156–165PubMedCentralPubMedCrossRefGoogle Scholar
  5. Dong QL, Liu DD, An XH et al (2011) MdVHP1 encodes an apple vacuolar H+-PPase and enhances stress tolerance in transgenic apple callus and tomato. J Plant Physiol 168:2124–2133PubMedCrossRefGoogle Scholar
  6. Doyle SM, Diamond M, McCabe PF (2010) Chloroplast and reactive oxygen species involvement in apoptotic-like programmed cell death in Arabidopsis suspension cultures. J Exp Bot 61:473–482PubMedCentralPubMedCrossRefGoogle Scholar
  7. Drozdowicz YM, Rea PA (2001) Vacuolar H+ pyrophosphatases: from the evolutionary backwaters into the mainstream. Trends Plant Sci 6:206–211PubMedCrossRefGoogle Scholar
  8. Fukuda A, Tanaka Y (2006) Effects of ABA, auxin, and gibberellin on the expression of genes for vacuolar H+ -inorganic pyrophosphatase, H+ -ATPase subunit A, and Na+/H+ antiporter in barley. Plant Physiol Biochem 44:351–358PubMedCrossRefGoogle Scholar
  9. Gao F, Gao Q, Duan X et al (2006) Cloning of an H+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance. J Exp Bot 57:3259–3270PubMedCrossRefGoogle Scholar
  10. Gaxiola RA, Li J, Undurraga S et al (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA 98:11444–11449PubMedCentralPubMedCrossRefGoogle Scholar
  11. Hasegawa PM, Bressan RA, Zhu JK et al (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499PubMedCrossRefGoogle Scholar
  12. Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608PubMedCentralPubMedCrossRefGoogle Scholar
  13. Lebaudy A, Véry A-A, Sentenac H (2007) K+ channel activity in plants: genes, regulations and functions. FEBS Lett 581:2357–2366PubMedCrossRefGoogle Scholar
  14. Li J, Yang H, Peer WA et al (2005) Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science 310:121–125PubMedCrossRefGoogle Scholar
  15. Liu L, Wang Y, Wang N et al (2011) Cloning of a vacuolar H+-pyrophosphatase gene from the halophyte Suaeda corniculata whose heterologous overexpression improves salt, saline-alkali and drought tolerance in Arabidopsis. J Integr Plant Biol 53:731–742PubMedGoogle Scholar
  16. Lv SL, Lian LJ, Tao PL et al (2009) Overexpression of Thellungiella halophila H+-PPase (TsVP) in cotton enhances drought stress resistance of plants. Planta 229:899–910PubMedCrossRefGoogle Scholar
  17. Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125PubMedCrossRefGoogle Scholar
  18. Pasapula V, Shen G, Kuppu S et al (2011) Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J 9:88–99PubMedCrossRefGoogle Scholar
  19. Perez-Castineira JR, Lopez-Marques RL, Losada M et al (2001) A thermostable K(+)-stimulated vacuolar-type pyrophosphatase from the hyperthermophilic bacterium Thermotoga maritima. FEBS Lett 496:6–11PubMedCrossRefGoogle Scholar
  20. Qu GQ, Liu X, Zhang YL et al (2009) Evidence for programmed cell death and activation of specific caspase-like enzymes in the tomato fruit heat stress response. Planta 229:1269–1279PubMedCrossRefGoogle Scholar
  21. Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69:225–232CrossRefGoogle Scholar
  22. Sakata T, Oshino T, Miura S et al (2010) Auxins reverse plant male sterility caused by high temperatures. Proc Natl Acad Sci USA 107:8569–8574PubMedCentralPubMedCrossRefGoogle Scholar
  23. Tan J, Tu L, Deng F et al (2012) Exogenous Jasmonic acid inhibits cotton fiber elongation. J Plant Growth Regul 31(4):599–605CrossRefGoogle Scholar
  24. Tu LL, Zhang XL, Liang SG et al (2007) Genes expression analyses of sea-island cotton (Gossypium barbadense L.) during fiber development. Plant Cell Rep 26:1309–1320PubMedCrossRefGoogle Scholar
  25. Vile D, Pervent M, Belluau M et al (2012) Arabidopsis growth under prolonged high temperature and water deficit: independent or interactive effects? Plant Cell Environ 35:702–718PubMedCrossRefGoogle Scholar
  26. Wang Y, Jin S, Wang M, Zhu L, Zhang X (2013) Isolation and characterization of a conserved domain in the eremophyte H+-PPase fmaily. Plos ONE 8(7):e7099. doi:  10.1371/journal.pone.0070099
  27. Yang H, Knapp J, Koirala P et al (2007) Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type I H+-pyrophosphatase. Plant Biotechnol J 5:735–745PubMedCrossRefGoogle Scholar
  28. Zhang XQ, Wu KL, Xue DW (2009) Effects of waterlogging stress on antioxidative enzyme system in different barley genotypes. J Zhejiang Univ (Agric Life Sci) 35(3):315–320Google Scholar
  29. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273PubMedCentralPubMedCrossRefGoogle Scholar
  30. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445PubMedCrossRefGoogle Scholar
  31. Zhu JK, Qiu QS, Guo Y et al (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 99:8436–8441PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yanqin Wang
    • 1
    • 2
  • Shuangxia Jin
    • 2
  • Ling Min
    • 2
  • Xin He
    • 2
  • Yaoyao Li
    • 2
  • Yi Zhu
    • 2
  • Yichun Nie
    • 2
  • Xianlong Zhang
    • 2
  • Longfu Zhu
    • 2
  1. 1.Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim BasinTarim UniversityAlaerChina
  2. 2.National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople’s Republic of China

Personalised recommendations