Skip to main content

Advertisement

Log in

Proteomic Analysis of PEG-Induced Drought Stress Responsive Protein in TERF1 Overexpressed Sugarcane (Saccharum officinarum) Leaves

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Drought is the major abiotic stress limiting sugarcane growth and productivity. ERF proteins regulate a variety of stress responses in plant. Overexpression of TERF1 can enhance the tolerance of transgenic sugarcane to drought stress. To improve the efficiency of sugarcane breeding, better understanding of the tolerance mechanism at molecular level is required. Two-dimensional gel electrophoresis (2-DE) coupled tandem mass spectrometry (MS/MS) analyses were conducted to compare the leaf proteome of the TERF1 OE and WT sugarcane plants to PEG stress. Using statistical program, 50 significantly differential protein spots were detected, of which 36 spots were identified by PMF and MS/MS fragmentation. Most of the identified proteins corresponded to metabolism, energy, protein synthesis, and disease/defense. Results implicated that the involvement of different metabolic pathways that may be activated in the TERF1 overexpressed transgenic sugarcane to cope with drought environment. Of the identified proteins, abundance of pentatricopeptide repeat (PPR) containing protein and peptidyl prolyl cis-trans isomerase (PPIase) were decreased, but the abundance of vital proteins, such as metabolism protein (14-3-3 like protein), photosynthetic protein (RuBisCO large subunit, PEP carboxylase), ferredoxin, glyceraldehyde 3-phosphate dehydrogenase, elongation factor Tu, several small heat shock proteins, and peroxidases were increased. Analysis of protein properties showed that majority of the differentially abundant proteins associated with drought were stable, hydrophilic, and transmembrane proteins. Thus, the results of our study unravel the regulatory mechanism of TERF1 for drought stress tolerance of transgenic sugarcane and provide new insight into adaptation to osmotic stress through altering the expression of particular proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TERF1:

Tomato ethylene responsive factor 1

TCA:

Trichloroacetic acid

2-DE:

Two-dimensional gel electrophoresis

CHAPS:

3-[(3-Cholamidopropyl) dimethylammonio]-1-propanesulfonate

OE:

Overexpressed

MOWSE:

Molecular weight search

WT:

Wild-type

IEF:

Isoelectric focusing

PEG:

Polyethylene glycol

SDS:

Sodium dodecyl sulfate

ERF:

Ethylene responsive factor

PMF:

Peptide mass fingerprinting

RWC:

Relative water content

MS:

Mass spectrometry

DTT:

Dithiothreitol

NCBI:

National center for biotechnology information

MALDI-TOF-TOF-MS:

Matrix-assisted laser desorption/ionization-time of flight/time of flight tandem mass spectrometry

ROS:

Reactive oxygen species

References

  • Aghaei K, Ehsanpour AA, Komatsu S (2008) Proteome analysis of potato under salt stress. J Proteome Res 7:4858–4868

    Article  CAS  PubMed  Google Scholar 

  • Agrawal GK, Jwa NS, Rakwal R (2009) Rice proteomics: ending phase I and the beginning of phase II. Proteomics 9:935–963

    Article  CAS  PubMed  Google Scholar 

  • Ali GM, Komatsu S (2006) Proteomic analysis of rice leaf sheath during drought stress. J Proteome Res 5:396–403

    Article  CAS  PubMed  Google Scholar 

  • Amalraj RS, Selvaraj N, Veluswamy GK et al (2010) Sugarcane proteomics: establishment of a protein extraction method for 2-DE in stalk tissues and initiation of sugarcane proteome reference map. Electrophoresis 31:1959–1974

    Article  CAS  PubMed  Google Scholar 

  • Bae MS, Cho EJ, Choi EY et al (2003) Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant J 36:652–663

    Article  CAS  PubMed  Google Scholar 

  • Bandehagh A, Uliaie ED, Salekdeh GH (2013) Proteomic analysis of rapeseed (Brassica napus L.) seedling roots under salt stress. Anal Biol Res 4(7):212–221

    CAS  Google Scholar 

  • Benesova M, Hola D, Fischer L et al. (2012) The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to short-term dehydration? PLoS ONE 7:e38017.10.1371/journal.pone.0038017

  • Bevan M, Bancroft I, Bent E et al (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391:485–488

    Article  CAS  PubMed  Google Scholar 

  • Bommer UA, Borovjagin AV, Greagg MA et al (2002) The mRNA of the translationally controlled tumour protein P23/TCTP is a highly structured RNA, which activates the dsRNA-dependent protein kinase PKR. RNA 8(4):478–496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Breton G, Danyluk J, Charron JBF et al (2003) Expression profiling and bioinformatic analyses of a novel stress-regulated multispanning transmembrane protein family from cereals and arabidopsis. Plant Physiol 132:64–74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao BH, Lu YQ, Chen GJ et al (2010) Functional characterization of the translationally controlled tumor protein (TCTP) gene associated with growth and defense response in cabbage. Plant Cell Tiss Organ Cult 103(2):217–226

    Article  CAS  Google Scholar 

  • Castillejo MÁ, Maldonado AM, Ogueta S et al (2008) Proteomic analysis of responses to drought stress in sunflower (Helianthus annuus) leaves by 2DE gel electrophoresis and mass spectrometry. Open Proteomics J 1:59–71

    Article  CAS  Google Scholar 

  • Cha-um S, Wangmoon S, Mongkolsiriwatana C et al (2012) Evaluating sugarcane (Saccharum sp.) cultivars for water deficit tolerance using some key physiological markers. Plant Biotechnol 29:431–439

    Article  CAS  Google Scholar 

  • Dhanda SS, Sethi GS (1998) Inheritance of excised-leaf water loss and relative water content in bread wheat (Triticum aestivum). Euphytica 104:39–47

    Article  Google Scholar 

  • Ding C, You J, Liu Z et al (2011) Proteomic analysis of low nitrogen stress-responsive proteins in roots of rice. Plant Mol Biol Rep 29:618–625

    Article  CAS  Google Scholar 

  • Dixon DP, Cummins I, Cole DJ et al (1998) Glutathione-mediated detoxification systems in plants. Curr Opin Plant Biol 1:258–266

    Article  CAS  PubMed  Google Scholar 

  • Edwards GE, Franceschi VR, Voznesenskaya EV (2004) Single-cell C4 photosynthesis versus the dual-cell (Kranz) paradigm. Annu Rev Plant Biol 55:173–196

    Article  CAS  PubMed  Google Scholar 

  • Falvo S, Acquadro A, Albo AG et al (2011) Proteomic analysis of PEG-fractionated UV-C stress-response proteins in globe artichoke. Plant Mol Biol Rep 30:111–122

    Article  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF et al (1997) Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Fuglsang AT, Guo Y, Cuin TA et al (2007) Arabidopsis protein kinase PKS5 inhibits the plasma membrane H + −ATPase by preventing interaction with 14-3-3 protein. Plant Cell 19:1617–1634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujii S, Small I (2011) The evolution of RNA editing and pentatricopeptide repeat genes. New Phytol 191:37–47

    Article  CAS  PubMed  Google Scholar 

  • Fukuyama K (2004) Structure and function of plant type ferredoxins. Photosynth Res 81:289–301

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Zhang H, Tian Y et al (2008) Expression of TERF1 in rice regulates expression of stress responsive genes and enhances tolerance to drought and high salinity. Plant Cell Rep 27:1787–1795

    Article  CAS  PubMed  Google Scholar 

  • Hajheidari M, Abdollahian-Noghabi M, Askari H et al (2005) Proteome analysis of sugar beet leaves under drought stress. Proteomics 5:950–960

    Article  CAS  PubMed  Google Scholar 

  • Hancock JT, Henson D, Nyirenda M et al (2005) Proteomic identification of glyceraldehydes 3-phosphate dehydrogenase as an inhibitory target of hydrogen peroxide in Arabidopsis. Plant Physiol Biochem 43:828–835

    Article  CAS  PubMed  Google Scholar 

  • Heckathorn SA, Ryan SL, Baylis JA et al (2002) In vivo evidence from an Agrostis stolonifera selection genotype that chloroplast small heat-shock proteins can protect photosystem II during heat stress. Funct Plant Biol 29:935–946

    Article  Google Scholar 

  • Huo CM, Zhao BC, Ge RC et al (2004) Proteomic analysis of the salt tolerance mutant of wheat under salt stress. Yi Chuan Xue Bao 31:1408–1414

    CAS  PubMed  Google Scholar 

  • Jangpromma N, Kitthaisong S, Lomthaisong K et al (2010) A proteomics analysis of drought stress responsive proteins as biomarker for drought-tolerant sugarcane cultivars. Am J Biochem Biotechnol 6:89–102

    Article  CAS  Google Scholar 

  • Jeanneau M, Gerentes D, Foueillassar X et al (2002) Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4-PEPC. Biochimie 84:1127–1135

    Article  CAS  PubMed  Google Scholar 

  • Kim ST, Kang YH, Wang Y et al (2009) Secretome analysis of differentially induced proteins in rice suspension cultured cells triggered by rice blast fungus and elicitor. Proteomics 9:1302–1313

    Article  CAS  PubMed  Google Scholar 

  • Kim SG, Wang Y, Wu J et al (2011) Physiological and proteomic analysis of young rice leaves grown under nitrogen starvation conditions. Plant Biotechnol Rep 5:309–315

    Article  Google Scholar 

  • Laclau PB, Laclau J-P (2009) Growth of the whole root system for a plant crop of sugarcane under rainfed and irrigated environments in Brazil. Field Crops Res 114:351–360

    Article  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses. Academic, London

    Google Scholar 

  • Li G, Lu XY, Li XP et al (2010) Cloning of a TCTP gene in wheat and its expression induced by Erysiphe graminis. Bull Bot Res 30(4):441–447

    CAS  Google Scholar 

  • Licausi F, Giorgi FM, Zenoni S et al (2010) Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genomics 11:719–734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Long SP, Ort DR (2010) More than taking the heat: crops and global change. Curr Opin Plant Biol 13:1–8

    Article  Google Scholar 

  • Lüthje S, Döring O, Heuer S et al (1997) Oxidoreductase activity in plant. Biochim Biophys Acta 1331(1):81–102

    Article  PubMed  Google Scholar 

  • Matin MA, Brown JH, Ferguson H (1989) Leaf water potential, relative water content, and diffusive resistance as screening techniques for drought resistance in barley. Agronomy J 81:100–105

    Article  Google Scholar 

  • Merewitz EB, Gianfagna T, Huang B (2011) Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bentgrass expressing an ipt gene for cytokinin synthesis. J Exp Bot 62(15):5311–5333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Michelet B, Boutry M (1995) The plasma membrane H1-ATPase. A highly regulated enzyme with multiple physiological functions. Plant Physiol 108:1–6

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M et al (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    Article  CAS  PubMed  Google Scholar 

  • Moran R (1982) Formulae for determination of chlorophyllous pigments extracted with N, N-Dimethylformamide. Plant Physiol 69:1376–1381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ngamhui N-O, Akkasaeng C, Zhu YJ et al (2012) Differentially expressed proteins in sugarcane leaves in response to water deficit stress. Plant Omics J 5(4):365–371

    CAS  Google Scholar 

  • Ngara R, Ndimba R, Borch-Jensen J et al (2012) Identification and profiling of salinity stress-responsive proteins in Sorghum bicolor seedlings. J Proteomics 75:4139–4150

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Arisi ACM, Juanin L et al (1997) The role of glycine in determining the rate of glutathione synthesis in poplar. Possible implications for glutathione production during stress. Physiol Plant 100:255–263

    Article  CAS  Google Scholar 

  • Nouri M-Z, Komatsu S (2010) Comparative analysis of soybean plasma membrane proteins under osmotic stress using gel-based and LC MS/MS-based proteomics approaches. Proteomics 10:1930–1945

    Article  CAS  PubMed  Google Scholar 

  • Parry MAJ, Keys AJ, Madgwick PJ et al (2008) Rubisco regulation: a role for inhibitors. J Exp Bot 23:1–12

    Google Scholar 

  • Plomion C, Lalanne C, Claverol S et al (2006) Mapping the proteome of poplar and application to the discovery of drought stress responsive proteins. Proteomics 6:6509–6527

    Article  CAS  PubMed  Google Scholar 

  • Prabu GR, Kawar PG, Pagariya MC et al (2011) Identification of water deficit stress upregulated genes in sugarcane. Plant Mol Biol Rep 29:291–304

    Article  Google Scholar 

  • Quail PH (2002) Photosensory perception and signalling in plant cells: new paradigms? Curr Opin Cell Biol 14:180–188

    Article  CAS  PubMed  Google Scholar 

  • Richmond T (2000) Higher plant cellulose synthases. Genome Biol 1(4):1–6

    Article  Google Scholar 

  • S’anchez-Fern’andez R, Fricker M, Corben LB (1997) Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control. Proc Natl Acad Sci U S A 94:2745–2750

    Article  Google Scholar 

  • Sage RF (2004) The evolution of C4 photosynthesis. New Phytol 161:341–370

    Article  CAS  Google Scholar 

  • Sehnke PC, DeLille JM, Ferl RJ (2002) Consummating signal transduction: the role of 14-3-3 proteins in the completion of signal-induced transitions in protein activity. Plant Cell 14:S339–S354

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seki M, Kamei A, Yamaguchi-Shinozaki K et al (2003) Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotechnol 14:194–199

    Article  CAS  PubMed  Google Scholar 

  • Sharma AD, Singh P (2003) Comparative studies on drought-induced changes in peptidyl prolyl cis–trans isomerase activity in drought-tolerant and susceptible cultivars of Sorghum bicolor. Curr Sci 84(7):911–918

    CAS  Google Scholar 

  • Sharoni AM, Nuruzzaman M, Satoh K et al (2011) Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol 52:344–360

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • Silva MDA, Jifon JL, de Silva JAG et al (2007) Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Braz J Plant Physiol 19:193–201

    Article  Google Scholar 

  • Singh KB, Rhonda CF, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436

    Article  CAS  PubMed  Google Scholar 

  • Soussi M, Ocana A, Lluch C (1998) Effects of salt stress on growth, photosynthesis and nitrogen fixation in chick-pea (Cicer arietinum L.). J Exp Bot 49:1329–1337

    Article  CAS  Google Scholar 

  • Swami AK, Alam SI, Sengupta N et al (2011) Differential proteomic analysis of salt stress response in Sorghum bicolor leaves. Env Exp Bot 71:321–328

    Article  CAS  Google Scholar 

  • Tai FJ, Yuan ZL, Wu XL et al (2011) Identification of membrane proteins in maize leaves, altered in expression under drought stress through polyethylene glycol treatment. Plant Omics J 4(5):250–256

    CAS  Google Scholar 

  • Tian Y, Zhang H, Pan X et al (2010) Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings. Transgenic Res 20:857–866

    Article  PubMed  Google Scholar 

  • Van den Wijngaard PW, Sinnige MP, Roobeek I et al (2005) Abscisic acid and 14-3-3 proteins control K channel activity in barley embryonic root. Plant J 41:43–55

    Article  PubMed  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Env 25:131–139

    Article  CAS  Google Scholar 

  • Xu CP, Huang BR (2010) Comparative analysis of drought responsive proteins in Kentucky bluegrass cultivars contrasting in drought tolerance. Crop Sci 50:2543–2552

    Article  Google Scholar 

  • Xu WF, Shi WM (2006) Expression profiling of the 14-3-3 gene family in response to salt stress and potassium and iron deficiencies in young tomato (Solanum lycopersicum) roots: analysis by real-time RT-PCR. Anal Bot 98:965–974

    Article  CAS  Google Scholar 

  • Xu A, Bellamy AR, Taylor JA (1999) Expression of translationally controlled tumour protein is regulated by calcium at both the transcriptional and post-transcriptional level. Biochemical J 342:683–689

    Article  CAS  Google Scholar 

  • Xu ZS, Chen M, Li LC et al (2008) Functions of the ERF transcription factor family in plants. Botany 86:969–977

    Article  CAS  Google Scholar 

  • Yan SP, Zhang QY, Tang ZC et al (2006) Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics 5:484–96

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Glaz B, Comstock JC (2010) Sugarcane response to water-deficit stress during early growth on organic and sand soils. Am J Agric Biol Sci 5:403–414

    Article  Google Scholar 

  • Zhao Y, Du HM, Wang ZL et al (2011) Identification of proteins associated with water-deficit tolerance in C (4) perennial grass species, Cynodon dactylon x Cynodon transvaalensis and Cynodon dactylon. Physiol Plant 141:40–55

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Yang L-T, Li YR et al (2012) Proteomic analysis of osmotic stress-responsive proteins in sugarcane leaves. Plant Mol Biol Rep 30:349–359

    Article  CAS  Google Scholar 

  • Zhu Q, Zhang J, Gao X et al (2010) The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses. Gene 457:1–12

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Agricultural Technology Project (NATP), PIU-BARC, Phase-1, IDA Credit 4386, Bangladesh. We thank the Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China for providing plant materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wu or Yanchun Yan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 325 kb)

ESM 2

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.A., Ren, L., Wu, W. et al. Proteomic Analysis of PEG-Induced Drought Stress Responsive Protein in TERF1 Overexpressed Sugarcane (Saccharum officinarum) Leaves. Plant Mol Biol Rep 33, 716–730 (2015). https://doi.org/10.1007/s11105-014-0784-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0784-3

Keywords

Navigation