Plant Molecular Biology Reporter

, Volume 33, Issue 2, pp 178–199 | Cite as

Analysis of Dahlia Mosaic Virus Full-length Transcript Promoter-Driven Gene Expression in Transgenic Plants

  • Dipak Kumar Sahoo
  • Shayan Sarkar
  • Sumita Raha
  • Narayan Chandra Das
  • Joydeep Banerjee
  • Nrisingha Dey
  • Indu B. Maiti
Original Paper


A 556-bp long full-length transcript promoter (DaMVFLt4-; −474 to +82 from transcription start site) with enhanced activity was characterized from the Dahlia mosaic virus (DaMV). The strength of the DaMVFLt4- promoter has been evaluated in transient systems and in transgenic plants using two different reporter genes like β-glucuronidase (GUS) and green fluorescent protein (GFP). The DaMVFLt4- promoter was found to be 4-fold and 5-fold stronger than the CaMV35S promoter in tobacco protoplast and transgenic tobacco plants, respectively. Electrophoretic mobility shift assay (EMSA) and supershift analysis confirmed the binding of tobacco transcription factor TGA1a to the enhancer region of the DaMVFLt4- promoter. TGA1a specially interacted with the activation sequence-1 (as-1) (−69 to –41 from transcription start site (TSS)) of DaMVFLt4- promoter as shown by DNaseI footprinting. UV cross-linking studies and Southwestern blot analysis clearly demonstrated that the purified TGA1a specifically bound to as-1 element, whereas in tobacco nuclear extract, two unknown transcription factors of about 41 kDa (putative TGA1a) and about 67 kDa were bound to the as-1 sequence of the DaMVFLt4- promoter. Expression studies with the DaMVFLt4-::β-glucuronidase (GUS) genes in tobacco protoplasts co-transfected with CaMV35S::TGA1a showed that expression of TGA1a resulted in approximately 3.7 times elevated levels of GUS activity. The DaMVFLt4- promoter is a constitutive promoter, and the expression level in tissues of transgenic tobacco plants was in the order root > leaf > stem. In addition, the DaMVFLt4- promoter was regulated by a number of abiotic and biotic stresses as studied in transgenic Arabidopsis and tobacco plants. The newly derived DaMVFLt4- promoter would become an efficient tool for biotechnological application.


DNA Promoter Caulimovirus Transgenic plants GUS GFP Confocal microscopy 



We are very much grateful to the Kentucky Tobacco Research and Development Center (KTRDC) for the facilities and support. This work was supported by the KY state KTRDC grant to IBM. The authors would like to thank Ms. Bonnie Kinney for her excellent care of the experimental tobacco plants, Mr. Abhimanyu Das, ILS for the technical assistance, and Dr. Sitakanta Pattanaik, University of Kentucky for the suggestions and technical advice.

Supplementary material

11105_2014_738_MOESM1_ESM.doc (20.4 mb)
ESM 1 (DOC 20856 kb)


  1. Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9(10):1859–1868. doi: 10.1105/tpc.9.10.1859 PubMedCentralPubMedGoogle Scholar
  2. Allen GC, Flores Vergara MA, Krasynanski S, Kumar S, Thompson WF (2006) A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc 1(5):2320–2325. doi: 10.1038/nprot.2006.384 CrossRefPubMedGoogle Scholar
  3. An G, Costa MA, Mitra A, Ha SB, Marton L (1988) Organ-specific and developmental regulation of the nopaline synthase promoter in transgenic tobacco plants. Plant Physiol 88(3):547–552CrossRefPubMedCentralPubMedGoogle Scholar
  4. Arguello-Astorga G, Herrera-Estrella L (1998) Evolution of light-regulated plant promoters. Annu Rev Plant Physiol Plant Mol Biol 49:525–555. doi: 10.1146/annurev.arplant.49.1.525 CrossRefPubMedGoogle Scholar
  5. Banerjee J, Sahoo DK, Dey N, Houtz RL, Maiti IB (2013) An intergenic region shared by At4g35985 and At4g35987 in Arabidopsis thaliana is a tissue specific and stress inducible bidirectional promoter analyzed in transgenic arabidopsis and tobacco plants. PLoS One 8(11):e79622. doi: 10.1371/journal.pone.0079622 CrossRefPubMedCentralPubMedGoogle Scholar
  6. Benfey PN, Chua NH (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science (New York, NY) 250(4983):959–966. doi: 10.1126/science.250.4983.959 CrossRefGoogle Scholar
  7. Bhattacharyya S, Dey N, Maiti IB (2002) Analysis of cis-sequence of subgenomic transcript promoter from the Figwort mosaic virus and comparison of promoter activity with the cauliflower mosaic virus promoters in monocot and dicot cells. Virus Res 90(1–2):47–62CrossRefPubMedGoogle Scholar
  8. Bhullar S, Chakravarthy S, Advani S, Datta S, Pental D, Burma PK (2003) Strategies for development of functionally equivalent promoters with minimum sequence homology for transgene expression in plants: cis-elements in a novel DNA context versus domain swapping. Plant Physiol 132(2):988–998. doi: 10.1104/pp. 103.020602 CrossRefPubMedCentralPubMedGoogle Scholar
  9. Bogunov Iu B (2006) Identification of Dahlia mosaic virus with molecular-biological methods. Mol Biol 40(1):184–185CrossRefGoogle Scholar
  10. Boher P, Serra O, Soler M, Molinas M, Figueras M (2013) The potato suberin feruloyl transferase FHT which accumulates in the phellogen is induced by wounding and regulated by abscisic and salicylic acids. J Exp Bot 64(11):3225–3236. doi: 10.1093/jxb/ert163 CrossRefPubMedCentralPubMedGoogle Scholar
  11. Bouchez D, Tokuhisa JG, Llewellyn DJ, Dennis ES, Ellis JG (1989) The ocs-element is a component of the promoters of several T-DNA and plant viral genes. EMBO J 8(13):4197–4204PubMedCentralPubMedGoogle Scholar
  12. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  13. Brunt AA (1971) Some hosts and properties of dahlia mosaic virus. Ann Appl Biol 67(3):357–368. doi: 10.1111/j.1744-7348.1971.tb02937.x CrossRefGoogle Scholar
  14. Chaturvedi CP, Sawant SV, Kiran K, Mehrotra R, Lodhi N, Ansari SA, Tuli R (2006) Analysis of polarity in the expression from a multifactorial bidirectional promoter designed for high-level expression of transgenes in plants. J Biotechnol 123(1):1–12. doi: 10.1016/j.jbiotec.2005.10.014 CrossRefPubMedGoogle Scholar
  15. Chodosh LA (2001) UV crosslinking of proteins to nucleic acids. Curr Protocol Mol Biol, Chapter 12:Unit 12.5. doi: 10.1002/0471142727.mb1205s36
  16. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J Cell Mol Biol 16(6):735–743CrossRefGoogle Scholar
  17. Dey N, Maiti IB (1999) Structure and promoter/leader deletion analysis of mirabilis mosaic virus (MMV) full-length transcript promoter in transgenic plants. Plant Mol Biol 40(5):771–782CrossRefPubMedGoogle Scholar
  18. Driesen M, Benito-Moreno RM, Hohn T, Futterer J (1993) Transcription from the CaMV 19 S promoter and autocatalysis of translation from CaMV RNA. Virology 195(1):203–210. doi: 10.1006/viro.1993.1361 CrossRefPubMedGoogle Scholar
  19. Escobar C, Aristizéabal F, Navas A, Del Campo FF, Fenoll C (2001) Isolation of active DNA-binding nuclear proteins from tomato galls induced by root-knot nematodes. Plant Mol Biol Report 19:375–376. doi: 10.1007/BF02772837
  20. Filichkin SA, Leonard JM, Monteros A, Liu PP, Nonogaki H (2004) A novel endo-beta-mannanase gene in tomato LeMAN5 is associated with anther and pollen development. Plant Physiol 134(3):1080–1087. doi: 10.1104/pp. 103.035998 CrossRefPubMedCentralPubMedGoogle Scholar
  21. Fleming AJ, Manzara T, Gruissem W, Kuhlemeier C (1996) Fluorescent imaging of GUS activity and RT-PCR analysis of gene expression in the shoot apical meristem. Plant J Cell Mol Biol 10(4):745–754CrossRefGoogle Scholar
  22. Himmelbach A, Liu L, Zierold U, Altschmied L, Maucher H, Beier F, Muller D, Hensel G, Heise A, Schutzendubel A, Kumlehn J, Schweizer P (2010) Promoters of the barley germin-like GER4 gene cluster enable strong transgene expression in response to pathogen attack. Plant Cell 22(3):937–952. doi: 10.1105/tpc.109.067934 CrossRefPubMedCentralPubMedGoogle Scholar
  23. Jefferson RA, Kavanagh TA, Bevan MW (1987a) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901–3907PubMedCentralPubMedGoogle Scholar
  24. Jefferson RA, Klass M, Wolf N, Hirsh D (1987b) Expression of chimeric genes in Caenorhabditis elegans. J Mol Biol 193(1):41–46CrossRefPubMedGoogle Scholar
  25. Jupin I, Chua NH (1996) Activation of the CaMV as-1 cis-element by salicylic acid: differential DNA-binding of a factor related to TGA1a. EMBO J 15: 5679–5689Google Scholar
  26. Katagiri F, Lam E, Chua NH (1989) Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature 340:727–730. doi: 10.1038/340727a0 CrossRefPubMedGoogle Scholar
  27. Katagiri F, Yamazaki K, Horikoshi M, Roeder RG, Chua NH (1990) A plant DNA-binding protein increases the number of active preinitiation complexes in a human in vitro transcription system. Genes Dev 4:1899–1909CrossRefPubMedGoogle Scholar
  28. Kroumova AB, Sahoo DK, Raha S, Goodin M, Maiti IB, Wagner GJ (2013) Expression of an apoplast-directed, T-phylloplanin-GFP fusion gene confers resistance against Peronospora tabacina disease in a susceptible tobacco. Plant Cell Rep 32(11):1771–1782. doi: 10.1007/s00299-013-1490-6 CrossRefPubMedGoogle Scholar
  29. Kumar D, Patro S, Ranjan R, Sahoo DK, Maiti IB, Dey N (2011) Development of useful recombinant promoter and its expression analysis in different plant cells using confocal laser scanning microscopy. PLoS One 6(9):e24627. doi: 10.1371/journal.pone.0024627 CrossRefPubMedCentralPubMedGoogle Scholar
  30. Lam E, Benfey PN, Gilmartin PM, Fang RX, Chua NH (1989) Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proc Natl Acad Sci U S A 86(20):7890–7894CrossRefPubMedCentralPubMedGoogle Scholar
  31. Lam E, Chua NH (1989) ASF-2: a factor that binds to the cauliflower mosaic virus 35S promoter and a conserved GATA motif in Cab promoters. Plant Cell 1(12):1147–1156. doi: 10.1105/tpc.1.12.1147 CrossRefPubMedCentralPubMedGoogle Scholar
  32. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:391–406CrossRefGoogle Scholar
  33. Lu Y, Chen X, Wu Y, Wang Y, He Y, Wu Y (2013) Directly transforming PCR-amplified DNA fragments into plant cells is a versatile system that facilitates the transient expression assay. PLoS One 8(2):e57171. doi: 10.1371/journal.pone.0057171 CrossRefPubMedCentralPubMedGoogle Scholar
  34. Luo XM, Lin WH, Zhu S, Zhu JY, Sun Y, Fan XY, Cheng M, Hao Y, Oh E, Tian M, Liu L, Zhang M, Xie Q, Chong K, Wang ZY (2010) Integration of light- and brassinosteroid-signaling pathways by a GATA transcription factor in Arabidopsis. Dev Cell 19(6):872–883. doi: 10.1016/j.devcel.2010.10.023 CrossRefPubMedCentralPubMedGoogle Scholar
  35. Macovei A, Tuteja N (2013) Different expression of miRNAs targeting helicases in rice in response to low and high dose rate gamma-ray treatments. Plant Signal Behav 8(8). doi: 10.4161/psb.25128
  36. Maeng BH, Nam DH, Kim YH (2011) Coexpression of molecular chaperones to enhance functional expression of anti-BNP scFv in the cytoplasm of Escherichia coli for the detection of B-type natriuretic peptide. World J Microbiol Biotechnol 27(6):1391–1398CrossRefPubMedGoogle Scholar
  37. Maiti IB, Gowda S, Kiernan J, Ghosh SK, Shepherd RJ (1997) Promoter/leader deletion analysis and plant expression vectors with the figwort mosaic virus (FMV) full length transcript (FLt) promoter containing single or double enhancer domains. Transgenic Res 6(2):143–156CrossRefPubMedGoogle Scholar
  38. Maiti IB, Shepherd RJ (1998) Isolation and expression analysis of peanut chlorotic streak Caulimovirus (PClSV) full-length transcript (FLt) promoter in transgenic plants. Biochem Biophys Res Commun 244(2):440–444. doi: 10.1006/bbrc.1998.8287 CrossRefPubMedGoogle Scholar
  39. Maruyama K, Todaka D, Mizoi J, Yoshida T, Kidokoro S, Matsukura S, Takasaki H, Sakurai T, Yamamoto YY, Yoshiwara K, Kojima M, Sakakibara H, Shinozaki K, Yamaguchi-Shinozaki K (2012) Identification of cis-acting promoter elements in cold- and dehydration-induced transcriptional pathways in Arabidopsis, rice, and soybean. DNA Res Int J Rapid Publ Rep Genes Genomes 19(1):37–49. doi: 10.1093/dnares/dsr040 Google Scholar
  40. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Asfaliza R, Latif MA (2013) Blast resistance in rice: a review of conventional breeding to molecular approaches. Mol Biol Rep 40(3):2369–2388. doi: 10.1007/s11033-012-2318-0 CrossRefPubMedGoogle Scholar
  41. Odell JT, Keith Dudley R, Howell SH (1981) Structure of the 19 S RNA transcript encoded by the cauliflower mosaic virus genome. Virology 111(2):377–385CrossRefPubMedGoogle Scholar
  42. Pahalawatta V, Druffel KL, Wyatt SD, Eastwell KC, Pappu HR (2008) Genome structure and organization of a member of a novel and distinct species of the genus Caulimovirus associated with dahlia mosaic. Arch Virol 153(4):733–738. doi: 10.1007/s00705-008-0043-8 CrossRefPubMedGoogle Scholar
  43. Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Park CY, Jeong JC, Moon BC, Lee JH, Yoon HW, Lee SH, Chung WS, Lim CO, Lee SY, Hong JC, Cho MJ (2004) Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol 135(4):2150–2161. doi: 10.1104/pp. 104.041442 CrossRefPubMedCentralPubMedGoogle Scholar
  44. Park SC, Kwon HB, Shih MC (1996) Cis-acting elements essential for light regulation of the nuclear gene encoding the A subunit of chloroplast glyceraldehyde 3-phosphate dehydrogenase in Arabidopsis thaliana. Plant Physiol 112(4):1563–1571CrossRefPubMedCentralPubMedGoogle Scholar
  45. Pattanaik S, Dey N, Bhattacharyya S, Maiti IB (2004) Isolation of full-length transcript promoter from the Strawberry vein banding virus (SVBV) and expression analysis by protoplasts transient assays and in transgenic plants. Plant Sci 167:427–438CrossRefGoogle Scholar
  46. Ranjan R, Patro S, Pradhan B, Kumar A, Maiti IB, Dey N (2012) Development and functional analysis of novel genetic promoters using DNA shuffling, hybridization and a combination thereof. PLoS One 7(3):e31931. doi: 10.1371/journal.pone.0031931 CrossRefPubMedCentralPubMedGoogle Scholar
  47. Richins RD, Shepherd RJ (1983) Physical maps of the genomes of dahlia mosaic virus and mirabilis mosaic virus-two members of the Caulimovirus group. Virology 124(1):208–214CrossRefPubMedGoogle Scholar
  48. Rogers HJ, Bate N, Combe J, Sullivan J, Sweetman J, Swan C, Lonsdale DM, Twell D (2001) Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Mol Biol 45(5):577–585CrossRefPubMedGoogle Scholar
  49. Sahoo DK, Dey N, Maiti IB (2014) pSiM24 is a novel versatile gene expression vector for transient assays as well as stable expression of foreign genes in plants. PLoS One (In Press)Google Scholar
  50. Sahoo DK, Maiti IB (2014) Biomass derived from transgenic tobacco expressing the Arabidopsis CESA3 ixr1-2 gene exhibits improved saccharification. Acta Biol Hung 65(2):189–204CrossRefPubMedGoogle Scholar
  51. Sahoo DK, Raha S, Hall JT, Maiti IB (2014) Over-expression of the synthetic chimeric native-T-phylloplanin-GFP genes optimized for monocot and dicot plants renders enhanced resistance to blue mold disease in tobacco (N. tabacum L.). The Scientific World Journal 2014: Article ID 601314, 12 pages. doi:  10.1155/2014/601314.
  52. Sahoo DK, Ranjan R, Kumar D, Kumar A, Sahoo BS, Raha S, Maiti IB, Dey N (2009) An alternative method of promoter assessment by confocal laser scanning microscopy. J Virol Methods 161(1):114–121. doi: 10.1016/j.jviromet.2009.06.011 CrossRefPubMedGoogle Scholar
  53. Sahoo DK, Stork J, DeBolt S, Maiti IB (2013) Manipulating cellulose biosynthesis by expression of mutant Arabidopsis proM24::CESA3(ixr1-2) gene in transgenic tobacco. Plant Biotechnol J 11(3):362–372. doi: 10.1111/pbi.12024 CrossRefPubMedGoogle Scholar
  54. Sazegari S, Niazi A (2012) Isolation and molecular characterization of wheat (Triticum aestivum) dehydration responsive element binding factor (DREB) isoforms. Aust J Crop Sci 6(6):1037–1044Google Scholar
  55. Schardl CL, Byrd AD, Benzion G, Altschuler MA, Hildebrand DF, Hunt AG (1987) Design and construction of a versatile system for the expression of foreign genes in plants. Gene 61(1):1–11CrossRefPubMedGoogle Scholar
  56. Scheible WR, Eshed R, Richmond T, Delmer D, Somerville C (2001) Modification of cellulose synthase confir resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants. Proc Natl Acad Sci U S A 98:10079–10084CrossRefPubMedCentralPubMedGoogle Scholar
  57. Schreiber DN, Bantin J, Dresselhaus T (2004) The MADS box transcription factor ZmMADS2 is required for anther and pollen maturation in maize and accumulates in apoptotic bodies during anther dehiscence. Plant Physiol 134(3):1069–1079. doi: 10.1104/pp. 103.030577 CrossRefPubMedCentralPubMedGoogle Scholar
  58. Van Verk MC, Bol JF, Linthorst HJ (2011) WRKY transcription factors involved in activation of SA biosynthesis genes. BMC Plant Biology 11:89. doi: 10.1186/1471-2229-11-89 CrossRefPubMedCentralPubMedGoogle Scholar
  59. Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J Cell Mol Biol 33(5):949–956CrossRefGoogle Scholar
  60. Wolf SS, Roder K, Schweizer M (1995) Determination of the molecular weight of DNA-binding proteins using UV-crosslinking and SDS-PAGE. Mol Biotechnol 4(3):269–273. doi: 10.1007/bf02779020 CrossRefPubMedGoogle Scholar
  61. Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10(2):88–94. doi: 10.1016/j.tplants.2004.12.012 CrossRefPubMedGoogle Scholar
  62. Yamazaki K, Katagiri F, Imaseki H, Chua NH (1990) TGA1a, a tobacco DNA-binding protein, increases the rate of preinitiation complex formation in a plant in vitro transcription system [corrected]. Proc Natl Acad Sci U S A 87:7035–7039CrossRefPubMedCentralPubMedGoogle Scholar
  63. Yanagisawa S (2004) Dof domain proteins: plant-specific transcription factors associated with diverse phenomena unique to plants. Plant Cell Physiol 45(4):386–391CrossRefPubMedGoogle Scholar
  64. Yanagisawa S, Sheen J (1998) Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. Plant Cell 10(1):75–89CrossRefPubMedCentralPubMedGoogle Scholar
  65. Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science (New York, NY) 287(5451):303–305CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Dipak Kumar Sahoo
    • 1
  • Shayan Sarkar
    • 2
  • Sumita Raha
    • 3
  • Narayan Chandra Das
    • 4
  • Joydeep Banerjee
    • 1
  • Nrisingha Dey
    • 2
  • Indu B. Maiti
    • 1
  1. 1.KTRDC, College of AgricultureUniversity of KentuckyLexingtonUSA
  2. 2.Department of Gene Function and Regulation, Institute of Life Sciences, Department of BiotechnologyGovernment of IndiaBhubaneswarIndia
  3. 3.Department of Radiation OncologyFeinberg School of Medicine, Northwestern UniversityChicagoUSA
  4. 4.Department of ZoologyScottish Church CollegeKolkataIndia

Personalised recommendations