Advertisement

Plant Molecular Biology Reporter

, Volume 33, Issue 1, pp 133–142 | Cite as

Isolation and Preliminary Functional Analysis of MxCS2: a Gene Encoding a Citrate Synthase in Malus xiaojinensis

  • De-Guo Han
  • Yan Shi
  • Bing Wang
  • Wei Liu
  • Ze-Yuan Yu
  • Bing-Yu Lv
  • Guo-Hui Yang
Original Paper

Abstract

Iron (Fe) is one of the essential micronutrients required by all plants. Citric acid (CA) is considered as the chelate substance in the long-distance transport of Fe. In the present study, a gene encoding putative citrate synthase was isolated from Malus xiaojinensis and designated as MxCS2. The MxCS2 gene encodes a protein of 296 amino acid residues with a predicted molecular mass of 33.2 kDa and a theoretical isoelectric point of 7.79. Subcellular localization has revealed that MxCS2 is preferentially localized in the mitochondrion and cytoplasmic membrane. The expression of MxCS2 was enriched in leaf, root, and phloem, which was highly affected by Fe stress and indoleacetic acid treatment in M. xiaojinensis seedlings. When MxCS2 was introduced into Arabidopsis, it promoted the synthesis of citrate synthase and increased CA content. Overexpression of MxCS2 improved the tolerance to Fe stress in transgenic Arabidopsis, but also led to increased fresh weight, root length, CS activity, and contents of chlorophyll, citrate acid, and Fe, especially when dealing with Fe stress.

Keywords

Iron MxCS2 Strategy I Transgenic Arabidopsis Real-time PCR 

Abbreviations

6-BA

6-Benzylaminopurine

ABA

Abscisic acid

CA

Citric acid

CaMV

Cauliflower mosaic virus

GFP

Green fluorescent protein

IAA

Indoleacetic acid

IBA

Indole-3-butytric acid

MS

Murashige and Skoog medium

MxCS2

Malus xiaojinensis citrate synthase gene 2

OE

Overexpression

ORF

Open reading frame

Real-time PCR

Real-time polymerase chain reaction

WT

Wild type

Notes

Acknowledgments

This project was funded by National Natural Science Foundation of China (31301757), China Postdoctoral Science Foundation (2013 M530144), Heilongjiang Postdoctoral Science Foundation (LBH-Z13033), the Doctoral Fund of Northeast Agricultural University (2012RCB09), Scientific Research Fund of Heilongjiang Provincial Education Department and Special Research of Public Sector on Agriculture (201103037).

References

  1. Abadía J, López-Millán AF, Rombolà A, Abadía A (2002) Organic acids and Fe deficiency: a review. Plant Soil 241:75CrossRefGoogle Scholar
  2. Alexandrov NN, Troukhan ME, Brover VV, Tatarinova T, Flavell RB, Feldmann KA (2006) Features of Arabidopsis genes and genome discovered using full-length cDNAs. Plant Mol Biol 60(1):69–85PubMedCrossRefGoogle Scholar
  3. An G, Watson BD, Chang CC (1988) Transformation of tobacco, tomato, potato, and Arabidopsis thaliana using a binary Ti vector system. Plant Physiol 81:301–305CrossRefGoogle Scholar
  4. Aono M, Kubo A, Saji H, Tanaka K, Kondo N (1993) Enhanced tolerance to photo-oxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity. Plant Cell Physiol 34:129–136Google Scholar
  5. Cataldo DA, McFadden KM, Garland TR, Wildung RE (1988) Organic constituents and complexation of nickel(II), iron(III), cadmium(II) and plutonium(IV) in soybean xylem exudates. Plant Physiol 86:34–39CrossRefGoogle Scholar
  6. Durrett TP, Gassmann W, Rogers EE (2007) The FRD3-mediared efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol 144:197–205PubMedCentralPubMedCrossRefGoogle Scholar
  7. Eckardt NA (2005) Peroxisomal citrate synthase provides exit route from fatty acid metabolism in oilseeds. Plant Cell 17(7):1863–1865PubMedCentralCrossRefGoogle Scholar
  8. Etienne C, Moing A, Dirlewanger E, Raymond P, Monet R, Rothan C (2002) Isolation and characterization of six peach cDNAs encoding key proteins in organic acid metabolism and solute accumulation: involvement in regulating peach fruit acidity. Plant Physiol 114:259–270CrossRefGoogle Scholar
  9. Gray NK, Pantopoulos K, Danderkar T, Ackrell BA, Hentze MW (1996) Translational regulation of mammalian and drosophila citric acid cycle enzymes via iron-responsive elements. Proc Natl Acad Sci USA 93:4925–4930PubMedCentralPubMedCrossRefGoogle Scholar
  10. Guerinot ML, Yi Y (1994) Iron: nutritious, noxious and not readily available. Plant Physiol 104:815–820PubMedCentralPubMedGoogle Scholar
  11. Han ZH, Wang Q, Shen T (1994) Comparison of some physiological and biochemical characteristics between iron-efficient and iron-inefficient species in the genus Malus. J Plant Nutr 17:1257–1264CrossRefGoogle Scholar
  12. Han ZH, Shen T, Korcak RF, Baligar VC (1998) Iron absorption by iron-efficient and inefficient species of apples. J Plant Nutr 2:181–190CrossRefGoogle Scholar
  13. Han DG, Wang Y, Zhang L, Ma L, Zhang XZ, Xu XF, Han ZH (2012) Isolation and functional characterization of MxCS1: a gene encoding a citrate synthase in Malus xiaojinensis. Biol Plant 56(1):50–56CrossRefGoogle Scholar
  14. Han DG, Wang L, Wang Y, Yang GH, Gao C, Yu ZY, Li TY, Zhang XZ, Ma L, Xu XF, Han ZH (2013a) Overexpression of Malus xiaojinensis CS1 gene in tobacco affects plant development and increases iron stress tolerance. Sci Hortic 150:65–72CrossRefGoogle Scholar
  15. Han DG, Yang GH, Xu KD, Shao Q, Yu ZY, Wang B, Ge QL, Yu Y (2013b) Overexpression of a Malus xiaojinensis Nas1 gene influences flower development and tolerance to iron stress in transgenic tobacco. Plant Mol Biol Rep 31:802–809CrossRefGoogle Scholar
  16. Hell R, Stephan UW (2003) Iron uptake, trafficking and homeoststasis in plants. Planta 216:541–551PubMedGoogle Scholar
  17. Jelali N, Dell’orto M, Abdelly C, Gharsalli M, Zocchi G (2010) Changes of metabolic responses to direct and induced Fe deficiency of two Pisum sativum cultivars. Environ Exp Bot 68(3):238–246CrossRefGoogle Scholar
  18. Jia CH, Jin ZQ, Liu JH, Zhang JB, Wang JS, Xu BY (2012) Isolation, characterization, and expression analysis of the MuBTB gene in banana. Plant Mol Biol Rep 5(30):1131–1137CrossRefGoogle Scholar
  19. Leek BT, Mudaliar SR, Henry R, Mathieu-Costello O, Richardson RS (2001) Effect of acute exercise on citrate synthase activity in untrained and trained human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 280(2):441–447Google Scholar
  20. Li P, Qi JL, Wang L, Huang QN, Han ZH, Yin LP (2006) Functional expression of MxIRT1, from Malus xiaojinensis complements an iron uptake-deficient yeast mutant for plasma membrane targeting via a membrane vesicles trafficking process. Plant Sci 171:52–59CrossRefGoogle Scholar
  21. Ling HQ, Koch G, Baumlein H, Ganal MW (1999) Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc Natl Acad Sci USA 96:7098–7103PubMedCentralPubMedCrossRefGoogle Scholar
  22. López-Millán AF, Morales F, Andaluz S, Gogorcena Y, Abadı́a A, De Las Rivas J, Abadı́a J (2000) Responses of sugar beet roots to iron deficiency. Changes in carbon assimilation and oxygen use. Plant Physiol 124(2):885–898PubMedCentralPubMedCrossRefGoogle Scholar
  23. López-Millán AF, Morales F, Abadía A, Abadía J (2001) Iron deficiency–associated changes in the composition of the leaf apoplastic fluid from field-grown pear (Pyrus communis L.) trees. J Exp Bot 52:1489–1498PubMedCrossRefGoogle Scholar
  24. López-Millán AF, Morales F, Gogorcena Y, Abadía A, Abadía J (2009) Metabolic responses in iron deficient tomato plants. J Plant Physiol 166:375–384PubMedCrossRefGoogle Scholar
  25. López-Millán AF, Grusak MA, Abadía J (2012) Carboxylate metabolism changes induced by Fe deficiency in barley, a Strategy II plant species. J Plant Physiol 169(11):1121–1124PubMedCrossRefGoogle Scholar
  26. Ma JF (2007) Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. Int Rev Cytol 264:225–252PubMedCrossRefGoogle Scholar
  27. Ma JF, Hiradate S (2000) Form of aluminium for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta 211(3):355–360PubMedCrossRefGoogle Scholar
  28. Marschner H (2012) Marschner's mineral nutrition of higher plants [M]. Academic, San DiegoGoogle Scholar
  29. Marschner H, Romheld V (1994) Strategies of plants for acquisition of iron. Plant Soil 165:261–274CrossRefGoogle Scholar
  30. Martínez-Cuenca MR, Iglesias DJ, Talón M, Abadía J, López-Millán AF, Primo-Millo E, Legaz F (2013) Metabolic responses to iron deficiency in roots of Carrizo citrange [Citrus sinensis (L.) Osbeck. × Poncirus trifoliata (L.) Raf.]. Tree Physiol 33(3):320–329PubMedCrossRefGoogle Scholar
  31. Rellán-Álvarez R, Giner-Martínez-Sierra J, Orduna J, Orera I, Rodríguez-Castrillón JA, García-Alonso JI, Abadía J, Álvarez-Fernández A (2010) Identification of a tri-iron (III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: new insights into plant iron long-distance transport. Plant Cell Physiol 51(1):91–102PubMedCrossRefGoogle Scholar
  32. Rombolà AD, Brüggemann W, López-Millán AF, Tagliavini M, Abadía J, Marangoni B, Moog PR (2002) Biochemical responses to iron deficiency in kiwifruit (Actinidia deliciosa). Tree Physiol 22(12):869–875PubMedCrossRefGoogle Scholar
  33. Romheld V, Marschner H (1986) Evidence for a specific system for iron phytosiderophores in roots of grasses. Plant Physiol 80:175–180PubMedCentralPubMedCrossRefGoogle Scholar
  34. Roschzttardtz H, Séguéla-Arnaud M, Briat JF, Vert G, Curie C (2011) The FRD3 citrate effluxer promotes iron nutrition between symplastically disconnected tissues throughout Arabidopsis development. Plant Cell 23(7):2725–2737PubMedCentralPubMedCrossRefGoogle Scholar
  35. Schikora A, Schmidt W (2001) Acclimative changes in root epidermal cell fate in response to Fe and P deficiency: a specific role for auxin? Protoplasma 218:67–75PubMedCrossRefGoogle Scholar
  36. Schmidt W, Tittel J, Schikora A (2000) Role of hormones in the induction of iron deficiency responses in Arabidopsis roots. Plant Physiol 122(4):1109–1118PubMedCentralPubMedCrossRefGoogle Scholar
  37. Shen J, Xu XF, Li TZ, Cao DM, Han ZH (2008) An MYB transcription factor from Malus xiaojinensis has a potential role in iron nutrition. J Integr Plant Biol 50(10):1300–1306PubMedCrossRefGoogle Scholar
  38. Slabas AR, Ndimba B, Simon WJ, Chivasa S (2004) Proteomic analysis of the Arabidopsis cell wall reveals unexpected proteins with new cellular locations. Biochem Soc Trans 32(3):524–528PubMedCrossRefGoogle Scholar
  39. Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263–1280PubMedCentralPubMedCrossRefGoogle Scholar
  40. Takita E, Koyama H, Shirano Y, Shibata D, Hara T (1999) Structure and expression of the mitochondrial citrate synthase gene in carrot cells utilizing Al-phosphate. Soil Sci Plant Nutr 45:197–205CrossRefGoogle Scholar
  41. Thimm O, Essigmann B, Kloska S, Altmann T, Buckhout TJ (2001) Response of Arabidopsis to iron deficiency stress as revealed by microarray analysis. Plant Physiol 127(3):1030–1043PubMedCentralPubMedCrossRefGoogle Scholar
  42. Tiffin LO (1970) Translocation of iron citrate and phosphorus in xylem exudate of soybean. Plant Physiol 45:280–283PubMedCentralPubMedCrossRefGoogle Scholar
  43. Wang YP, Wu YH, Zheng GH, Zhang JP, Xu GD (2013) Effects of potassium on organic acid metabolism of fe-sensitive and fe-resistant rices ('Oryza sativa'L). Austr J Crop Sci 7(6):843Google Scholar
  44. Wu T, Zhang HT, Wang Y, Jia WS, Xu XF, Zhang XZ, Han ZH (2012) Induction of root Fe(lll) reductase activity and proton extrusion by iron deficiency is mediated by auxin-based systemic signalling in Malus xiaojinensis. J Exp Bot 63:859–870PubMedCentralPubMedCrossRefGoogle Scholar
  45. Xiao HH, Yin LP, Xu XF, Li TZ, Han ZH (2008) The iron-regulated transporter, MbNRAMP1, isolated from Malus baccata is involved in Fe, Mn and Cd trafficking. Ann Bot 102:881–889PubMedCentralPubMedCrossRefGoogle Scholar
  46. Xu HM, Wang Y, Chen F, Zhang XZ, Han ZH (2011) Isolation and characterization of the iron-regulated MxbHLH01 gene in Malus xiaojinensis. Plant Mol Biol Rep 29:936–942CrossRefGoogle Scholar
  47. Yin LL, Wang Y, Yan MD, Zhang XZ, Pan HF, Xu XF, Han ZH (2013) Molecular cloning, polyclonal antibody preparation, and characterization of a functional iron-related transcription factor IRO2 from Malus xiaojinensis. Plant Physiol Bioch 67:63–70CrossRefGoogle Scholar
  48. Yokosho K, Yamaji N, Ueno D, Mitani N, Ma JF (2009) OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice. Plant Physiol 149(1):297–305PubMedCentralPubMedCrossRefGoogle Scholar
  49. Zhang YG, Cheng JH, Han ZH, Xu XF, Li TZ (2005) Comparison of methods for total RNA isolation from Malus xiaojinensis and cDNA amplified using LD-PCR. China Bio Bull 4:50–53Google Scholar
  50. Zhang YG, Kong J, Wang Y, Xu XF, Liu LL, Li TZ, Han ZH, Zhu YJ (2009) Isolation and characterisation of a nicotianamine synthase gene MxNas1 in Malus xiaojinensis. J Hortic Sci Biotech 84(1):47–52Google Scholar
  51. Zhang Q, Wang Y, Zhang XZ, Yin LL, Wu T, Xu XF, Jia WS, Han ZH (2012) Cloning and characterization of MxVHA-c, a vacuolar H+-ATPase subunit C gene related to Fe efficiency from Malus xiaojinensis. Plant Mol Biol Rep 30:1149–1157CrossRefGoogle Scholar
  52. Zhu Y, Wang Y, Kong J, Wang J, Zhang X, Han H (2009) Role of SAMS gene in Fe uptake mechanism of Malus xiaojinensis. Acta Hortic 2:463–469Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Northeast Region, Ministry of Agriculture/College of HorticultureNortheast Agricultural UniversityHarbinPeople’s Republic of China

Personalised recommendations