Advertisement

Plant Molecular Biology Reporter

, Volume 32, Issue 1, pp 258–269 | Cite as

Identification of Genes Involved in Resistance to Didymella pinodes in Pea by deepSuperSAGE Transcriptome Profiling

  • Sara Fondevilla
  • Björn Rotter
  • Nicolas Krezdorn
  • Ruth Jüngling
  • Peter Winter
  • Diego Rubiales
Original Paper

Abstract

Didymella pinodes, causing ascochyta blight, is the most destructive foliar pathogen of dry peas. Despite the importance of this pathogen, very little is known about the mechanisms or genes that control host plant resistance against the fungus. Here we employed deepSuperSAGE genome-wide transcription profiling to identify pea genes involved in resistance to D. pinodes in the wild, resistant Pisum sativum ssp. syriacum accession P665. Two deepSuperSAGE libraries were constructed from leaf RNA of infected and control plants. A total of 17,561 different UniTags were obtained. Seventy per cent of them could be assigned to known sequences from pea or other plants. 509 UniTags were significantly differentially expressed (P < 0.05; fold change ≥2, ≤2) in inoculated versus control plants. Of these, 78 % could be assigned to known sequences from pea or other plants, and 58 % to proteins with known function. Our results suggest that a battery of genes contribute to resistance against D. pinodes in the wild pea accession P665. For example, genes encoding protease inhibitors are activated, and the corresponding proteins may contribute to a lower penetration success. The production of antifungal compounds and strengthening of host cell walls may interfere with the spread of the pathogen. In addition, detoxification of D. pinodes toxins and repair of cell walls could also reduce the damage produced by this devastating necrotroph. Hormones orchestrate metabolic adaptation to D. pinodes infection, since ethylene, ABA and indole-3-acetic acid pathways were up-, while the gibberellic acid pathway was down-regulated.

Keywords

Didymella pinodes Resistance Transcriptomics SuperSAGE Ascochyta blight Pisum sativum 

Notes

Acknowledgments

The authors thank Professor Günter Kahl for critical revision of the manuscript. Financial support by AGL2011-22524 and GEN2006-27798-C6-6-E/VEG projects is acknowledged. S.F. was funded by FP7-PEOPLE-2011-IEF-300235 and a JAEDoc contract.

Supplementary material

11105_2013_644_MOESM1_ESM.docx (22 kb)
Table 1S (DOCX 22 kb)
11105_2013_644_MOESM2_ESM.docx (250 kb)
Figure 1S (DOCX 250 kb)
11105_2013_644_MOESM3_ESM.xlsx (55 kb)
Online resource 1 (XLSX 55 kb)

References

  1. Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995PubMedGoogle Scholar
  2. Bari R, Jones JDG (2009) Role of plant hormones in plant defense responses. Plant Mol Biol 69:473–488PubMedCrossRefGoogle Scholar
  3. Bonshtien A, Lev A, Gibly A, Debbie P, Avni A, Sessa G (2005) Molecular properties of the Xanthomonas AvrRxv effector and global transcriptional changes determined by its expression in resistant tomato plants. Mol Plant–Microbe Interact 18:300–310PubMedCrossRefGoogle Scholar
  4. Bradley DJ, Kjellbom P, Lamb CJ (1992) Elicitor and wound-induced oxidative cross-linking of a plant cell wall proline-rich protein: a novel, rapid defense response. Cell 70:21–30PubMedCrossRefGoogle Scholar
  5. Carrillo E, Rubiales D, Pérez-de-Luque A, Fondevilla S (2013) Characterization of mechanisms of resistance against Didymella pinodes in Pisum spp. Eur J Plant Pathol 135:761–769CrossRefGoogle Scholar
  6. Castillejo MA, Susín R, Madrid E, Fernández-Aparicio M, Jorrín JV, Rubiales D (2010a) Two-dimensional gel electrophoresis-based proteomic analysis of the Medicago truncatula–rust (Uromyces striatus) interaction. Ann Appl Biol 157:243–257CrossRefGoogle Scholar
  7. Castillejo MA, Curto M, Fondevilla S, Rubiales D, Jorrín J (2010b) Two-dimensional electrophoresis based proteomic analysis of the pea (Pisum sativum) in response to Mycosphaerella pinodes. J Agric Food Chem 58:12822–12832PubMedCrossRefGoogle Scholar
  8. Choi HW, Lee BG, Kim NH, Park Y, Lim CW et al (2008) A role for a menthone reductase in resistance against microbial pathogens in plants. Plant Physiol 148:383–401PubMedCentralPubMedCrossRefGoogle Scholar
  9. Clulow SA, Lewis BG, Matthews P (1991) A pathotype classification for Mycosphaerella pinodes. Phytopathology 131:322–332Google Scholar
  10. Daniels CH, Fristensky B, Wagoner W, Hadwiger LA (1987) Pea genes associated with non-host disease resistance to Fusarium are also active in race-specific disease resistance to Pseudomonas. Plant Mol Biol 8:309–316PubMedCrossRefGoogle Scholar
  11. Die JV, Román B, Nadal S, González-Verdejo CI (2010) Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions. Planta 232:145–153PubMedCrossRefGoogle Scholar
  12. Diener AC, Ausubel FM (2005) Resistance to Fusarium oxysporum 1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics 171:305–321PubMedCrossRefGoogle Scholar
  13. Dixon DP, Hawkins T, Hussey PJ, Edwards R (2009) Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. J Exp Bot 60(4):1207–1218PubMedCrossRefGoogle Scholar
  14. Fondevilla S, Ávila CM, Cubero JI, Rubiales D (2005) Response to Mycosphaerella pinodes in a germplasm collection of Pisum spp. Plant Breeding 124:313–315CrossRefGoogle Scholar
  15. Fondevilla S, Satovic Z, Rubiales D, Moreno MT, Torres AM (2008) Mapping of quantitative trait loci for resistance to Mycosphaerella pinodes in Pisum sativum subsp. syriacum. Mol Breeding 21:439–454CrossRefGoogle Scholar
  16. Fondevilla S, Küster H, Krajinski F, Cubero JI, Rubiales D (2011) Identification of genes differentially expressed in a resistant reaction to Mycosphaerella pinodes in pea using microarray technology. BMC Genomics 12:28PubMedCentralPubMedGoogle Scholar
  17. Franssen SU, Shrestha RP, Bräutigam A, Bornberg-Bauer E, Weber APM (2011) Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing. BMC Genomics 12:227PubMedCentralPubMedCrossRefGoogle Scholar
  18. Fristensky B, Riggleman RC, Wagoner W, Hadwiger LA (1985) Gene expression in susceptible and disease resistant interactions of peas induced with Fusarium solani pathogens and chitosan. Physiol Plant Pathol 27:15–28CrossRefGoogle Scholar
  19. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227PubMedCrossRefGoogle Scholar
  20. Gosti F, Beaudoin N, Serizet C, Webb AAR, Vartanian N, Giraudat J (1999) ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11:1897–1909PubMedCentralPubMedGoogle Scholar
  21. He ZH, He D, Kohorn BD (1998) Requirement for the induced expression of a cell wall- associated receptor kinase for survival during the pathogen response. Plant J 14:55–63PubMedCrossRefGoogle Scholar
  22. Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42:462–468PubMedCrossRefGoogle Scholar
  23. Jakoby M, Weisshaar B, Dröge-Laser W, Carbajosa JV, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7(3):106–111PubMedCrossRefGoogle Scholar
  24. Kaur S, Pembleton LW, Cogan NO, Savin KW, Leonforte T et al (2012) Transcriptome sequencing of field pea and faba bean for discovery and validation of SSR genetic markers. BMC Genomics 13:104PubMedCentralPubMedCrossRefGoogle Scholar
  25. Kohorn BD, Kohorn SL (2012) The cell wall associated kinases, WAKs as pectin receptors. Front Plant Sci 3:88PubMedCentralPubMedCrossRefGoogle Scholar
  26. Krishnaswamy SS, Srivastava S, Mohammadi M, Rahman MH, Deyholos MK, Kav NNV (2008) Transcriptional profiling of pea ABR17 mediated changes in gene expression in Arabidopsis thaliana. BMC Plant Biology 8:91PubMedCentralPubMedCrossRefGoogle Scholar
  27. Johnson R, Narvaez J, An G, Ryan CA (1989) Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta. Proc Natl Acad Sci USA 86:9871–9875PubMedCrossRefGoogle Scholar
  28. Iqbal MJ, Yaegashi S, Ahsan R, Shopinski KL, Lightfoot DA (2005) Root response to Fusarium solani f. sp. glycines: Temporal accumulation of transcripts in partially resistant and susceptible soybean. Theor Appl Genet 110:1429–1438PubMedCrossRefGoogle Scholar
  29. Li H, Zhou S, Zhao W, Su S, Peng Y (2009) A novel wall-associated receptor-like protein kinase gene, OsWAK1, plays important roles in rice blast disease resistance. Plant Mol Biol 69:337–346PubMedCrossRefGoogle Scholar
  30. Lu H, Higgins VJ (1999) The effect of hydrogen peroxide on the viability of tomato cells and of the fungal pathogen Cladosporium fulvum. Physiol Mol Plant Pathol 54:131–143CrossRefGoogle Scholar
  31. Luo M, Dang P, Bausher MG, Holbrook CC, Lee RD et al (2005) Identification of transcripts involved in resistance responses to leaf spot disease caused by Cercosporidium personatum in peanut (Arachis hypogaea). Phytopathology 95:381–387PubMedCrossRefGoogle Scholar
  32. Mader M, Fussl R (1982) Role of peroxidase in lignification of tobacco cells. Plant Physiol 70:1132–1134PubMedCentralPubMedCrossRefGoogle Scholar
  33. Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158PubMedCrossRefGoogle Scholar
  34. Martin C, Paz-Ares J (1997) MYB transcription factors in plants. Trends Genet 13(2):67–73PubMedCrossRefGoogle Scholar
  35. Matsui H, Nakamura G, Ishiga Y, Toshima H, Inagaki Y et al (2004) Structure and expression of 12-oxophytodienoate reductase (subgroup I) genes in pea, and characterization of the oxidoreductase activities of their recombinant products. Mol Gen Genomics 271:1–10CrossRefGoogle Scholar
  36. Matsumura H, Yoshida K, Luo S, Kimura E, Fujibe T et al (2010) High-throughput SuperSAGE for digital gene expression analysis of multiple samples using Next Generation Sequencing. PLoS ONE 5(8):e12010PubMedCentralPubMedCrossRefGoogle Scholar
  37. Mayrose M, Ekengren SK, Melech-Bonfil S, Martin GB, Sessa G (2006) A novel link between tomato GRAS genes, plant disease resistance and mechanical stress response. Mol Plant Pathol 7:593–604PubMedCrossRefGoogle Scholar
  38. Molina C, Rotter B, Horres R, Udupa SU, Besser B et al (2008) SuperSAGE: The drought stress-responsive transcriptome of chickpea roots. BMC Genomics 9:553–581PubMedCentralPubMedCrossRefGoogle Scholar
  39. Molina C, Zaman-Allah M, Khan F, Fatnassi N, Horres R et al (2011) The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE. BMC Plant Biol 11:31PubMedCentralPubMedCrossRefGoogle Scholar
  40. Moy P, Qutob D, Chapman BP, Atkinson I, Gijzen M (2004) Patterns of gene expression upon infection of soybean plants by Phytophthora sojae. Mol Plant–Microbe Interact 17:1051–1062PubMedCrossRefGoogle Scholar
  41. Mustafa BM, Coram TE, Pang ECK, Taylor PWJ, Ford R (2009) A cDNA microarray approach to decipher lentil (Lens culinaris) responses to Ascochyta lentis. Aust Plant Pathol 38:617–631CrossRefGoogle Scholar
  42. Park C, Peng Y, Chen X, Dardick C, Ruan D et al (2008) Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity. PLoS Biology 6(9):e231PubMedCentralPubMedCrossRefGoogle Scholar
  43. Prioul S, Frankewitz A, Deniot G, Morin G, Baranger (2004) A Mapping of quantitative trait loci for partial resistance to Mycosphaerella pinodes in pea (Pisum sativum L.) at the seedling and adult plant stages. Theor Appl Genet 108:1322–1334PubMedCrossRefGoogle Scholar
  44. Quilis J, Meynard D, Vila L, Avilés FX, Guiderdoni E, San Segundo B (2007) A potato carboxypeptidase inhibitor gene provides pathogen resistance in transgenic rice. Plant Biotechnol J 5:537–553PubMedCrossRefGoogle Scholar
  45. Riggleman RC, Fristensky B, Hadwiger LA (1985) The disease resistance response in pea is associated with increased levels of specific mRNAs. Plant Mol Biol 4(81):86Google Scholar
  46. Ringlia C, Keller B, Ryserb U (2001) Glycine-rich proteins as structural components of plant cell walls. Cell Mol Life Sci 58:1430–1441CrossRefGoogle Scholar
  47. Rubiales D, Fondevilla S (2012) Future prospects for ascochyta blight resistance breeding in cool season food legumes. Front Plant Sci 3:27PubMedCentralPubMedCrossRefGoogle Scholar
  48. Salam MU, Galloway J, Diggle J, MacLeod WJ, Maling T (2011) Predicting regional-scale spread of ascospores of Didymella pinodes causing ascochyta blight disease on field pea. Aust Plant Pathol 40(6):640–647CrossRefGoogle Scholar
  49. Samac DA, Peñuela S, Schnurr JA, Hunt EN, Foster-Hartnett D et al (2011) Expression of coordinately regulated defence response genes and analysis of their role in disease resistance in Medicago truncatula. Mol Plant Pathol 12(8):786–798PubMedCrossRefGoogle Scholar
  50. Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T et al (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97(21):11655–11660PubMedCrossRefGoogle Scholar
  51. Schwechheimer C (2008) Understanding gibberellic acid signaling—are we there yet? Curr Opin Plant Biol 11:9–15PubMedCrossRefGoogle Scholar
  52. Tar’an B, Warkentin T, Somers DJ, Miranda D, Vandenberg A et al (2003) Quantitative trait loci for lodging resistance, plant height and partial resistance to mycosphaerella blight in field pea (Pisum sativum L.). Theor Appl Genet 107:1482–1491PubMedCrossRefGoogle Scholar
  53. Tellström V, Usadel B, Thimm O, Still M, Küster H, Niehaus K (2007) The lipopolysaccharide of Sinorhizobium meliloti suppresses defense-associated gene expression in cell cultures of the host plant Medicago truncatula. Plant Physiol 143:825–837PubMedCentralPubMedCrossRefGoogle Scholar
  54. Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939PubMedCrossRefGoogle Scholar
  55. Timmerman-Vaughan GM, Frew TJ, Russell AC, Khan T, Butler R et al (2002) QTL mapping of partial resistance to field epidemics of ascochyta blight of pea. Crop Sci 42:2100–2111CrossRefGoogle Scholar
  56. Timmerman-Vaughan GM, Frew TJ, Butler R, Murray S, Gilpin M et al (2004) Validation of quantitative trait loci for Ascochyta blight resistance in pea (Pisum sativum L.), using populations from two crosses. Theor Appl Genet 109:1620–1631PubMedCrossRefGoogle Scholar
  57. Tivoli B, Banniza S (2007) Comparison of the epidemiology of ascochyta blights on grain legumes. Eur J Plant Pathol 119:59–76CrossRefGoogle Scholar
  58. Torres MA, Jones JDG, Dangl JL (2005) Pathogen-induced, NADPH oxidasederived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat Genet 37:1130–1134PubMedCrossRefGoogle Scholar
  59. Thurau T, Kifle S, Jung C, Cai D (2003) The promoter of the nematode resistance gene Hs1pro-1 activates a nematode-responsive and feeding site-specific gene expression in sugar beet (Beta vulgaris L.) and Arabidopsis thaliana. Plant Mol Biol 52:643–660PubMedCrossRefGoogle Scholar
  60. Usadel B, Nagel A, Thimm O, Redestig H, Blaesing OE et al (2005) Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses. Plant Physiol 138:1195–1204PubMedCentralPubMedCrossRefGoogle Scholar
  61. Vandenabeele S, Van Der Kelen K, Dat J, Gadjev I, Boonefaes T et al (2003) A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proc Natl Acad Sci USA 100:16113–16118PubMedCrossRefGoogle Scholar
  62. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487PubMedCrossRefGoogle Scholar
  63. van Loon L, van Strien EA (1999) The families of pathogenesis related proteins, their activities and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97CrossRefGoogle Scholar
  64. Wang X, Vindhya BM, Basnayake S, Zhang H, Li G et al (2009) The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Mol Plant Microbe Interact 22(10):1227–1238PubMedCrossRefGoogle Scholar
  65. Wroth JM (1998) Possible role for wild genotypes of Pisum spp. to enhance ascochyta blight resistance in pea. Aust J Exp Agric 38:469–479CrossRefGoogle Scholar
  66. Zabala G, Zou J, Tuteja J, Gonzalez DO, Clough SJ, Vodkin LO (2006) Transcriptome changes in the phenylpropanoid pathway of Glycine max in response to Pseudomonas syringae infection. BMC Plant Biol 6:26PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sara Fondevilla
    • 1
    • 3
  • Björn Rotter
    • 2
  • Nicolas Krezdorn
    • 2
  • Ruth Jüngling
    • 2
  • Peter Winter
    • 2
  • Diego Rubiales
    • 3
  1. 1.Institute for Molecular BioscienceUniversity of FrankfurtFrankfurt am MainGermany
  2. 2.GenXProFrankfurt am MainGermany
  3. 3.Institute for Sustainable Agriculture, CSICCórdobaSpain

Personalised recommendations