Plant Molecular Biology Reporter

, Volume 31, Issue 5, pp 1077–1088 | Cite as

Effects of Monogalactoglycerolipid Deficiency and Diacylglycerol Acyltransferase Overexpression on Oil Accumulation in Transgenic Tobacco

  • Han-Ying Wu
  • Chao Liu
  • Min-Chun Li
  • Ming-Ming Zhao
  • Dan Gu
  • Yi-Nong Xu
Original Paper


Engineering accumulation of triacylglycerol (TAG) in vegetative tissues has been recently proposed as a promising strategy for increasing plant oil production. However, little is known about regulatory mechanisms involved in increasing oil production in plant vegetative tissues. In this study, expression of NtMGD1 encoding a major biosynthetic enzyme for the chloroplast membrane lipid was inhibited by RNAi interference in tobacco. Furthermore, AtDGAT1, a rate-regulating gene involved in TAG biosynthesis, was ectopically overexpressed. Results showed that leaf TAG accumulations were significantly increased both by NtMGD1 RNAi and AtDGAT1 overexpression. However, combination of AtDGAT1 overexpression with NtMGD1 RNAi did not result in additive increase in TAG accumulation in leaves than AtDGAT1 overexpression or NtMGD1 RNAi alone. In addition, reduction of monogalactosyldiacylglycerol (MGDG) biosynthesis by NtMGD1 RNAi was relieved by AtDGAT1 overexpression. Expression of lipid transfer protein (LTP) was upregulated both by AtDGAT1 overexpression and NtMGD1 RNAi and correlated with increased oil accumulation in leaves. Our results indicated that fatty acids deesterified from chloroplast membrane galactolipids could be redirected into TAG. TAG is an energy-dense molecule that might act as a storage pool for carbohydrate. This membrane lipid remodeling may represent an adaptive response that enables plant cells to avoid toxic effects of free fatty acids.


Diacylglycerol acyltransferase Monogalactosyldiacylglycerol Nicotiana tabacum Oil accumulation Triacylglycerol 





Diacylglycerol acyltransferase








Thin layer chromatography


Palmitic acid


Stearic acid


Oleic acid


Linoleic acid


Linolenic acid



This work was supported by the National Natural Science Foundation of China (Grant Nos. 30870208 and 30770224) and the National Major Special Project of China on New Varieties Cultivation for Transgenic Organisms (Grant No. 2009ZX08004-009B) and the National Key Basic Research Program (Grant No. 2011CBA00900). The authors are grateful to Dr. Zhongping Lin for offering vector pCAMBIA3300.


  1. Andrianov V, Borisjuk N, Pogrebnyak N, Brinker A, Dixon J, Spitsin S, Flynn J, Matyszczuk P, Andryszak K, Laurelli M, Golovkin M, Koprowski H (2010) Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnol J 8:277–287. doi: 10.1111/j.1467-7652.2009.00458.x PubMedCrossRefGoogle Scholar
  2. Arnon D (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol 24(1):1–15PubMedCrossRefGoogle Scholar
  3. Bao X, Ohlrogge J (1999) Supply of fatty acid is one limiting factor in the accumulation of triacylglycerol in developing embryos. Plant Physiol 120:1057–1062PubMedCrossRefGoogle Scholar
  4. Bao X, Focke M, Pollard M, Ohlrogge J (2000) Understanding in vivo carbon precursor supply for fatty acid synthesis in leaf tissue. Plant J 22:39–50PubMedCrossRefGoogle Scholar
  5. Baud S, Mendoza MS, To A, Harscoet E, Lepiniec L, Dubreucq B (2007) WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J 50:825–838. doi: 10.1111/j.1365-313X.2007.03092.x PubMedCrossRefGoogle Scholar
  6. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedCrossRefGoogle Scholar
  7. Bouvier-Nave P, Benveniste P, Oelkers P, Sturley SL, Schaller H (2000) Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase. Eur J Biochem 267:85–96PubMedCrossRefGoogle Scholar
  8. Carlsson AS, Yilmaz JL, Green AG, Stymne S, Hofvander P (2011) Replacing fossil oil with fresh oil—with what and for what? Eur J Lipid Sci Technol 113:812–831. doi: 10.1002/ejlt.201100032 PubMedCrossRefGoogle Scholar
  9. Cernac A, Benning C (2004) WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40:575–585. doi: 10.1111/j.1365-313X.2004.02235.x PubMedCrossRefGoogle Scholar
  10. Chapman KD, Ohlrogge JB (2012) Compartmentation of triacylglycerol accumulation in plants. J Biol Chem 287:2288–2294. doi: 10.1074/jbc.R111.290072 PubMedCrossRefGoogle Scholar
  11. Chen W, Song K, Cai Y, Li W, Liu B, Liu L (2011) Genetic modification of soybean with a novel grafting technique: downregulating the FAD2-1 gene increases oleic acid content. Plant Mol Biol Rep 29:866–874. doi: 10.1007/s11105-011-0286-5 CrossRefGoogle Scholar
  12. Chi X, Yang Q, Lu Y, Wang J, Zhang Q, Pan L, Chen M, He Y, Yu S (2011) Genome-wide analysis of fatty acid desaturases in soybean (Glycine max). Plant Mol Biol Rep 29:769–783. doi: 10.1007/s11105-010-0284-z CrossRefGoogle Scholar
  13. Durrett TP, Benning C, Ohlrogge J (2008) Plant triacylglycerols as feedstocks for the production of biofuels. Plant J 54:593–607. doi: 10.1111/j.1365-313X.2008.03442.x PubMedCrossRefGoogle Scholar
  14. El-Hafid L, Pham AT, Zuily-fodil Y, Vieira da Silva JV (1989) Enzymatic breakdown of polar lipids in cotton leaves under water stress: I. Degradation of monogalactosyl-diacylglycerol. Plant Physiol Biochem 27:495–502Google Scholar
  15. Hills MJ (2004) Control of storage-product synthesis in seeds. Curr Opin Plant Biol 7:302–308. doi: 10.1016/j.pbi.2004.03.003 PubMedCrossRefGoogle Scholar
  16. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231CrossRefGoogle Scholar
  17. Jako C, Kumar A, Wei Y, Zou J, Barton DL, Giblin EM, Covello PS, Taylor DC (2001) Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol 126:861–874PubMedCrossRefGoogle Scholar
  18. James CN, Horn PJ, Case CR, Gidda SK, Zhang D, Mullen RT, Dyer JM, Anderson RG, Chapman KD (2010) Disruption of the Arabidopsis CGI-58 homologue produces Chanarin-Dorfman-like lipid droplet accumulation in plants. Proc Natl Acad Sci U S A 107:17833–17838. doi: 10.1073/pnas.0911359107 PubMedCrossRefGoogle Scholar
  19. Jarvis P, Dormann P, Peto CA, Lutes J, Benning C, Chory J (2000) Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant. Proc Natl Acad Sci U S A 97:8175–8179. doi: 10.1073/pnas.100132197 PubMedCrossRefGoogle Scholar
  20. Kaup MT, Froese CD, Thompson JE (2002) A role for diacylglycerol acyltransferase during leaf senescence. Plant Physiol 129:1616–1626. doi: 10.1104/pp.003087 PubMedCrossRefGoogle Scholar
  21. Kinney AJ, Cahoon EB, Hitz WD (2002) Manipulating desaturase activities in transgenic crop plants. Biochem Soc Trans 30:1099–1103. doi: 10.1042/ PubMedCrossRefGoogle Scholar
  22. Klaus D, Ohlrogge JB, Neuhaus HE, Dormann P (2004) Increased fatty acid production in potato by engineering of acetyl-CoA carboxylase. Planta 219:389–396. doi: 10.1007/s00425-004-1236-3 PubMedCrossRefGoogle Scholar
  23. Lin W, Oliver DJ (2008) Role of triacylglycerols in leaves. Plant Sci 175:233–237CrossRefGoogle Scholar
  24. Liu J, Hua W, Zhan G, Wei F, Wang X, Liu G, Wang H (2010) Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus. Plant Physiol Biochem 48:9–15. doi: 10.1016/j.plaphy.2009.09.007 PubMedCrossRefGoogle Scholar
  25. Luo JJ, Wang GL, Xu YN (2006) Reduction of monogalactosyldiacylglycerol (MGDG) content in tobacco leaves using RNAi in: C. Benning, J. Ohlrogge (Eds.) Current advances in the biochemistry and cell biology of plant lipids. Aardvark Global, Salt Lake City 16:16–20Google Scholar
  26. Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419:399–403. doi: 10.1038/nature00962 PubMedCrossRefGoogle Scholar
  27. Masaki T, Mitsui N, Tsukagoshi H, Nishii T, Morikami A, Nakamura K (2005) ACTIVATOR of Spomin::LUC1/WRINKLED1 of Arabidopsis thaliana transactivates sugar-inducible promoters. Plant Cell Physiol 46:547–556. doi: 10.1093/pcp/pci072 PubMedCrossRefGoogle Scholar
  28. Millar AA, Kunst L (1999) The natural genetic variation of the fatty-acyl composition of seed oils in different ecotypes of Arabidopsis thaliana. Phytochemistry 52:1029–1033PubMedCrossRefGoogle Scholar
  29. Mu J, Tan H, Zheng Q, Fu F, Liang Y, Zhang J, Yang X, Wang T, Chong K, Wang XJ, Zuo J (2008) LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiol 148:1042–1054. doi: 10.1104/pp.108.126342 PubMedCrossRefGoogle Scholar
  30. Murphy DJ (2001) The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40:325–438PubMedCrossRefGoogle Scholar
  31. Murphy GJP, Parker ML (1984) Lipid composition and carbon turnover of wheat leaf oleosomes. J Exp Bot 35:348–355CrossRefGoogle Scholar
  32. Nikolau BJ, Ohlrogge JB, Wurtele ES (2003) Plant biotin-containing carboxylases. Arch Biochem Biophys 414:211–222PubMedCrossRefGoogle Scholar
  33. Ohlrogge J, Chapman K (2011) Expanding the contribution of plant oils as biofuels: the seeds of green energy. Biochemist 33:34–38Google Scholar
  34. Ohlrogge JB, Jaworski JG (1997) Regulation of fatty acid synthesis. Annu Rev Plant Physiol Plant Mol Biol 48:109–136. doi: 10.1146/annurev.arplant.48.1.109 PubMedCrossRefGoogle Scholar
  35. Sakaki T, Kondo N, Yamada M (1990) Pathway for the synthesis of triacylglycerols from monogalactosyldiacylglycerols in ozone-fumigated spinach leaves. Plant Physiol 94:773–780PubMedCrossRefGoogle Scholar
  36. Sanjaya, Durrett TP, Weise SE, Benning C (2011) Increasing the energy density of vegetative tissues by diverting carbon from starch to oil biosynthesis in transgenic Arabidopsis. Plant Biotechnol J 9:874–883. doi: 10.1111/j.1467-7652.2011.00599.x PubMedCrossRefGoogle Scholar
  37. Santos Mendoza M, Dubreucq B, Miquel M, Caboche M, Lepiniec L (2005) LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed specific mRNAs in Arabidopsis leaves. FEBS Lett 579:4666–4670. doi: 10.1016/j.febslet.2005.07.037 PubMedCrossRefGoogle Scholar
  38. Sharma N, Anderson M, Kumar A, Zhang Y, Giblin EM, Abrams SR, Zaharia LI, Taylor DC, Fobert PR (2008) Transgenic increases in seed oil content are associated with the differential expression of novel Brassica-specific transcripts. BMC Genomics 9:619. doi: 10.1186/1471-2164-9-619 PubMedCrossRefGoogle Scholar
  39. Shen B, Allen WB, Zheng P, Li C, Glassman K, Ranch J, Nubel D, Tarczynski MC (2010) Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol 153:980–987. doi: 10.1104/pp.110.157537 PubMedCrossRefGoogle Scholar
  40. Slocombe SP, Cornah J, Pinfield-Wells H, Soady K, Zhang Q, Gilday A, Dyer JM, Graham IA (2009) Oil accumulation in leaves directed by modification of fatty acid breakdown and lipid synthesis pathways. Plant Biotechnol J 7:694–703. doi: 10.1111/j.1467-7652.2009.00435.x PubMedCrossRefGoogle Scholar
  41. Wang HY, Guo JH, Lambert KN, Lin Y (2007) Developmental control of Arabidopsis seed oil biosynthesis. Planta 226:773–783. doi: 10.1007/s00425-007-0524-0 PubMedCrossRefGoogle Scholar
  42. White SW, Zheng J, Zhang YM, Rock (2005) The structural biology of type II fatty acid biosynthesis. Annu Rev Biochem 74:791–831. doi: 10.1146/annurev.biochem.74.082803.133524 PubMedCrossRefGoogle Scholar
  43. Xu YN, Wang ZN, Jiang GZ, Li LB, Kuang TY (2003) Effect of various temperatures on phosphatidylglycerol biosynthesis in thylakoid membranes. Physiol Plant 118:57–63PubMedCrossRefGoogle Scholar
  44. Xu C, Fan J, Cornish AJ, Benning C (2008) Lipid trafficking between the endoplasmic reticulum and the plastid in Arabidopsis requires the extraplastidic TGD4 protein. Plant Cell 20:2190–2204. doi: 10.1105/tpc.108.061176 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Han-Ying Wu
    • 1
  • Chao Liu
    • 1
  • Min-Chun Li
    • 1
  • Ming-Ming Zhao
    • 1
  • Dan Gu
    • 1
  • Yi-Nong Xu
    • 1
  1. 1.Key Laboratory of Photobiology, Chinese Academy of SciencesInstitute of BotanyBeijingChina

Personalised recommendations