Plant Molecular Biology Reporter

, Volume 31, Issue 1, pp 21–31 | Cite as

Loss of the Acetyl-CoA Carboxylase (accD) Gene in Poales

  • Mark E. Harris
  • Gabriele Meyer
  • Thomas Vandergon
  • Virginia Oberholzer Vandergon
Original Paper


The loss of a gene is a rare genome-shaping event and as such, contributes important information to our understanding of phylogenetic relationships between genes and between species. Deletion of a gene can help to define a lineage. Here, we utilize the deletion of the chloroplast gene encoding the acetyl-CoA carboxylase subunit D (accD) to help us define lineages based on its presence or absence in monocot plants specifically in Poales. Southern blots were constructed and probed for the presence of the accD gene. The existence of the portion of the accD gene represented by the probe was also verified by PCR and sequencing. Sequences were utilized for assembly of gene trees to link the absence or partial loss of the gene with a particular lineage. Here, we report new information adding accD gene presence in the Xyridaceae, pseudogene presence in the Flagellariaceae, and the absence of accD in Restionaceae and Joinvilleaceae. Based on our findings and the available data for accD sequences in Poales, we propose a model for accD loss beginning with a single event creating a pseudogene in the common ancestor to the restiid and graminid clades within Poales. This model also suggests that this pseudogene is carried as the ancestral state throughout most of the divergence of the Poales, a condition that would explain the highly varied pattern of accD pseudogene presence or gene absence in members of the restiid and graminid clades.


Chloroplast genome Gene rearrangement accD Poales Molecular phylogeny Monocots 

Supplementary material

11105_2012_461_MOESM1_ESM.docx (18 kb)
Table 1 DNA / Sequence Sources (DOCX 17.5 kb)
11105_2012_461_MOESM2_ESM.docx (12 kb)
Table 2 PCR primers (DOCX 11.5 kb)
11105_2012_461_MOESM3_ESM.pdf (58 kb)
Figure 4 Location of PCR primers (see Table 2) (PDF 57.7 kb)


  1. Aagesen L, Petersen G, Seberg O (2005) Sequence length variation, indel costs, and congruence in sensitivity analysis. Cladistics 21:15–30CrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  3. APG (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linnean Soc 161(2):105–121CrossRefGoogle Scholar
  4. Barbrook AC, Howe CJ, Purton S (2006) Why are plastid genomes retained in non-photosynthetic organisms? Trends Plant Sci 11(2):101–108PubMedCrossRefGoogle Scholar
  5. Bhattacharya D, Medlin L (1995) The phylogeny of plastids: a review based on comparisons of small-subunit ribosomal RNA coding regions. J Phycol 31:489–498CrossRefGoogle Scholar
  6. Bremer K (2002) Gondwanan evolution of the grass alliance of families (Poales). Evolution 56:1374–1387PubMedGoogle Scholar
  7. Bryant N, Lloyd J, Sweeney C, Myouga F, Meinke D (2011) Identification of nuclear genes encoding chloroplast-localized proteins required for embryo development in Arabidopsis. Plant Physiol 155:1678–1689PubMedCrossRefGoogle Scholar
  8. Burns JH, Faden RB, Steppan SJ (2011) Phylogenetic studies in the Commelinaceae Subfamily Commelinoideae inferred from nuclear ribosomal and chloroplast DNA sequences. Sys Bot 36(2):268–276CrossRefGoogle Scholar
  9. Cai Z, Guisinger M, Kim H-G, Ruck E, Blazier JC, McMurtry V, Kuehl JV, Boore J, Jansen RK (2008) Extensive reorganization of the plastid genome of Trifolium subterraneum (Fabaceae) is associated with numerous repeated sequences and novel DNA insertions. J Mol Evol 67(6):696–704PubMedCrossRefGoogle Scholar
  10. Chase MW, Soltis DE, Soltis PS, Rudall PJ, Fay MF, Hahn WH, Sullivan S, Joseph J, Molvray M, Kores PJ, Givnish TJ, Sytsma KJ, Pires JC (2000) Higher-level systematics of the monocotyledons: an assessment of current knowledge and a new classification. In: Wilson KL, Morrison DA (eds) Monocots: Systematics and evolution. CSIRO Publishing, Collingwood, pp 3–16Google Scholar
  11. Chu KH, Qi J, Yu Z, Anh V (2003) Origin and phylogeny of chloroplasts revealed by a simple correlation analysis of complete genomes. Mol Biol Evol 21:200–206PubMedCrossRefGoogle Scholar
  12. Chu H, Cho WK, Jo Y, Kim W-I, Rim Y, Kim JY (2011) Identification of natural hybrids in Korean Phragmites using haplotype and genotype analysis. Plant Syst Evol 293(1–4):247–253CrossRefGoogle Scholar
  13. Chumley TW, Palmer JD, Mower JP, Boore JL, Fourcade HM, Caile PJ, Jansen RK (2006) The complete chloroplast genome sequence of Pelargonium × hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol Biol Evol 23(11):2175–2190PubMedCrossRefGoogle Scholar
  14. Clegg MT (1993) Chloroplast gene sequences and the study of plant evolution. Proc Natl Acad Sci USA 90:363–367PubMedCrossRefGoogle Scholar
  15. Cosner ME, Raubeson LA, Jansen RK (2004) Chloroplast DNA rearrangements in Campanulaceae: phylogenetic utility of highly rearranged genomes. BMC Evol Biol 4:27PubMedCrossRefGoogle Scholar
  16. Cronan JE, Waldrop GL (2002) Multi-subunit acetyl-CoA carboxylase. Prog Lipid Res 41(5):407–435PubMedCrossRefGoogle Scholar
  17. Dahlgren R, Clifford HT, Yeo PF (1985) The families of the monocotyledons. Springer, New York, p 584CrossRefGoogle Scholar
  18. Delannoy E, Fujii S, Colas des Francs-Small C, Brundrett M, Small I (2011) Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes. Mol Biol Evol 28(7):2077–2086PubMedCrossRefGoogle Scholar
  19. Downie SR, Palmer JD (1992) Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. In: Soltis D, Soltis P, Doyle JJ (eds) Molecular systematics of plants. Chapman and Hall, London, pp 14–35CrossRefGoogle Scholar
  20. Duvall MR, Davis JI, Clark LG, Noll JD, Goldman DH, Sanchez-Ken JG (2007) Phylogeny of the grasses (Poaceae) revisited. Aliso 23:237–247Google Scholar
  21. Givnish TJ, Ames M, McNeal JR, McKain MR, Steele PR, dePamphilis CW, Graham SW, Pires JC, Stevenson DW, Zomlefer WB, Briggs BG, Duvall MR, Moore MJ, Heaney JM, Soltis DE, Soltis PS, Thiele K, Leebens-Mack JH (2010) Assembling the tree of the monocotyledons: Plastome sequence phylogeny and evolution of Poales. Ann Mo Bot Gard 97(4):584–616CrossRefGoogle Scholar
  22. Goremykin VV, Holland B, Hirsch-Ernst KI, Hellwig FH (2005) Analysis of Acorus calamus chloroplast genome and its phylogenetic implications. Mol Biol Evol 22(9):1813–1822PubMedCrossRefGoogle Scholar
  23. GPWG (2001) Phylogeny and subfamilial classification of the grasses (Poaceae). Ann Mo Bot Gard 88(3):373–457CrossRefGoogle Scholar
  24. GPWG (Grass Phylogeny Working Group) (2000) A phylogeny of the grass family (Poaceae), as inferred from eight character sets. In: Jacobs SWL, Everett JE (eds) Grasses: Systematic evolution. CSIRO, Collingwood, p 392Google Scholar
  25. Guisinger MM, Chumley TW, Kuehl JV, Boore JL, Jansen RK (2010) Implications of the plastid genome sequence of Typha (Typhaceae, Poales) for understanding genome evolution in Poaceae. J Mol Evol 70(2):149–166PubMedCrossRefGoogle Scholar
  26. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  27. Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M et al (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217(2–3):185–194PubMedCrossRefGoogle Scholar
  28. Huelsenbeck JP, Ronquist F (2005) Bayesian analysis of molecular evolution using MrBayes. In: Nielsen R (ed) Statistical methods in molecular evolution. Springer, New York, pp 183–232CrossRefGoogle Scholar
  29. Jansen RK, Kaittanis C, Saski C, Lee S-B, Tompkins J, Alverson AJ, Daniell H (2006) Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: Effects of taxon sampling and phylogenetic methods on resolving relationships among Rosids. BMC Evol Biol 6:32PubMedCrossRefGoogle Scholar
  30. Jansen RK, Cai Z, Raubeson LA, Daniell H, dePamphilis CW, Leebens-Mack J, Müller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee S, Peery R, McNeal JR, Kuehl JV, Boore JL (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA 104:19369–19374PubMedCrossRefGoogle Scholar
  31. Katayama H, Ogihara Y (1996) Phylogenetic affinities of the grasses to other monocots as revealed by molecular analysis of chloroplast DNA. Curr Genet 29:572–581PubMedCrossRefGoogle Scholar
  32. Kellogg EA (2000) The grasses: a case study in macroevolution. Annu Rev Ecol Syst 31:217–238CrossRefGoogle Scholar
  33. Khan A, Khan IA, Heinze B, Azim MK (2011) The chloroplast genome sequence of Date Palm (Phoenix dactylifera L. cv ‘Aseel’). Plant Mol Biol Rep. doi: 10.1007/s11105-011-0373-7
  34. Kode V, Mudd EA, Iamtham S, Day A (2005) The tobacco plastid accD gene is essential and is required for leaf development. Plant J 44:237–244PubMedCrossRefGoogle Scholar
  35. Konishi T, Shinohara K, Yamada K, Sasaki Y (1996) Acetyl-CoA carboxylase in higher plants: most plants other than gramineae have both the prokaryotic and the eukaryotic forms of this enzyme. Plant Cell Phys 37(2):117–122CrossRefGoogle Scholar
  36. Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One 2(6):e508. doi: 10.1371/journal.pone.0000508 PubMedCrossRefGoogle Scholar
  37. Lee HL, Jansen RK, Chumley TW, Kim KJ (2007) Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. Mol Biol Evol 24(5):1161–1180PubMedCrossRefGoogle Scholar
  38. Magee AM, Aspinall S, Rice DW, Cusack BP, Semon M, Perry AS, Stefanovic S, Milbourne D, Barth S, Palmer JD, Gray JC, Kavanagh TA, Wolfe KH (2010) Localized hypermutation and associated gene losses in legume chloroplast genomes. Genome Res 20:1700–1710PubMedCrossRefGoogle Scholar
  39. Maier RM, Neckermann K, Igloi GL, Kossel H (1995) Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251:614–628PubMedCrossRefGoogle Scholar
  40. Margulis L (1981) Symbiosis in cell evolution: Life and its environment on the early earth. WH Freeman, New York, p 452Google Scholar
  41. Martin W (2003) Gene transfer from organelles to the nucleus: frequent and in big chunks. Proc Natl Acad Sci USA 100:8612–8614PubMedCrossRefGoogle Scholar
  42. Martin W, Stoebe B, Goremykin V, Hansmann S, Hasegawa M, Kowallik KV (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393:162–165PubMedCrossRefGoogle Scholar
  43. Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci 99:12246–12251PubMedCrossRefGoogle Scholar
  44. Melkonian M (2001) Systematics and evolution of the algae. I. Genomics meets phylogeny. In: Esser K, Lüttge U, Kadereit JW, Beyschlag W (eds) Progress in botany, vol 62. Springer-Verlag, Berlin-Heidelberg, pp 340–382Google Scholar
  45. Morris LM, Duvall MR (2010) The chloroplast genome of Anomochola marantoidea (Anomochlooideae; Poaceae) comprises a mixture of grass-like and unique features. Am J Bot 97(4):620–627PubMedCrossRefGoogle Scholar
  46. Morton BR, Clegg MT (1993) A chloroplast DNA mutational hotspot and gene conversion in a noncoding region near rbcL in the grass family (Poaceae). Curr Genet 24:357–365PubMedCrossRefGoogle Scholar
  47. Nobel PS (1967) A rapid technique for isolating chloroplasts with high rates of endogenous photophosphorylation. Plant Physiol 42(10):1389–1394PubMedCrossRefGoogle Scholar
  48. Nock CJ, Waters DLE, Edwards MA, Bowen SG, Rice N, Cordeiro GM, Henry RJ (2011) Chloroplast genome sequences from total DNA for plant identification. Plant Biotech J 9:328–333CrossRefGoogle Scholar
  49. Ogihara Y, Terachi T, Sasakuma T (1991) Molecular analysis of the hot spot region related to length mutations in wheat chloroplast DNAs. I. Nucleotide divergence of genes and intergenic spacer regions located in the hot spot region. Genetics 129:873–884PubMedGoogle Scholar
  50. Ogihara Y, Isono K, Kojima T, Endo A, Hanaoka M, Shiina T, Terachi T, Utsugi S, Murata M, Mori N, Takumi S, Ikeo K, Gojobori T, Murai R, Murai K, Matsuoka Y, Ohnishi Y, Tajiri H, Tsunewaki K (2000) Chinese spring wheat (Triticum aestivum L.) chloroplast genome: complete sequence and contig clones. Plant Mol Bio Rep 18:243–253CrossRefGoogle Scholar
  51. Ogihara Y, Isono K, Kojima T, Endo A, Hanaoka M, Shiina T, Terachi T, Utsugi S, Murata M, Mori N, Takumi S, Ikeo K, Gojobori T, Murai R, Murai K, Matsuoka Y, Ohnishi Y, Tajiri H, Tsunewaki K (2002) Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA. Mol Genet Genomics 266(5):740–746PubMedCrossRefGoogle Scholar
  52. Ozawa S, Nield J, Terao A, Stauber EJ, Hippler M, Koike H, Rochaix JD, Takahashi Y (2009) Biochemical and structural studies of the large Ycf4-Photosystem I assembly complex of the green alga Chlamydomonas reinhardtii. The Plant Cell 21:2424–2442PubMedCrossRefGoogle Scholar
  53. Palmer JD (1985) Comparative organization of chloroplast genomes. Ann Rev Genet 19:325–354PubMedCrossRefGoogle Scholar
  54. Raubeson LA, Jansen RK (2005) Chloroplast genomes of plants. In: Henry RJ (ed) Plant diversity and evolution: Genotypic and phenotypic variation in higher plants. CABI, Wallingford, pp 45–68CrossRefGoogle Scholar
  55. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  56. Saarela JM, Graham SW (2010) Inferences of phylogenetic relationships among the subfamilies of grasses (Poaceae:Poales) using meso-scale exemplar-based sampling of the plastid genome. Botany 88:65–84CrossRefGoogle Scholar
  57. Sanchez-Ken JG, Clark LG (2010) Phylogeny and a new tribal classification of the Panicoideae s.l. (Poaceae) based on plastid and nuclear sequence data and structural data. Am J Bot 97(10):1732–1748PubMedCrossRefGoogle Scholar
  58. Sanchez-Ken JG, Clark LG, Kellogg EA, Kay EE (2007) Reinstatement and emendation of subfamily Micrairoideae. Syst Bot 32:71–80CrossRefGoogle Scholar
  59. Sasaki Y, Nagano Y (2004) Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci Biotechnol Biochem 68(6):1175–1184PubMedCrossRefGoogle Scholar
  60. Schulte W, Topfer R, Stracke R, Schell J, Martini N (1997) Multi-functional acetyl-CoA carboxylase from Brassica napus is encoded by a multi-gene family: Indication for plastidic localization of at least one isoform. Proc Natl Acad Sci USA 94:3465–3470PubMedCrossRefGoogle Scholar
  61. Sugiura M (2003) History of chloroplast genomics (Historical highlights of photosynthesis research, part 2). Photosynth Res 76:371–377PubMedCrossRefGoogle Scholar
  62. Swofford DL (2002) PAUP: Phylogenetic analysis using parsimony. Smithsonian, Washington DCGoogle Scholar
  63. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nuc Acids Res 22(22):4673–4680CrossRefGoogle Scholar
  64. Wolfe K, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058PubMedCrossRefGoogle Scholar
  65. Wu FH, Kan DP, Lee SB, Daniell H, Lee YW, Lin CC, Lin NS, Lin CS (2009) Complete nucleotide sequence of Dendrocalamus latiflorus and Bambusa oldhamii chloroplast genomes. Tree Physiol 29(6):847–856PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Mark E. Harris
    • 1
  • Gabriele Meyer
    • 1
  • Thomas Vandergon
    • 2
  • Virginia Oberholzer Vandergon
    • 1
  1. 1.California State University, NorthridgeNorthridgeUSA
  2. 2.Pepperdine University24255 Pacific Coast HighwayMalibuUSA

Personalised recommendations