Advertisement

Plant Molecular Biology Reporter

, Volume 30, Issue 6, pp 1426–1432 | Cite as

Characterization of a Novel Pollen-Specific Promoter from Wheat (Triticum Aestivum L.)

  • Ling Chen
  • Yingjie Miao
  • Cheng Wang
  • Peipei Su
  • Tianheng Li
  • Rong Wang
  • Xinglong Hao
  • Guangxiao Yang
  • Guangyuan He
  • Chunbao Gao
Original Paper

Abstract

PSG076 is a pollen-specific gene isolated from wheat. The 1.4-kb promoter upstream of the ATG start codon was isolated by inverse-PCR (IPCR). To determine its activity, the PSG076 promoter was fused with the β-glucuronidase (GUS) reporter gene and introduced into tobacco. Histochemical analysis in transgenic tobacco showed that GUS activity was detected in late bicellular pollen grains and increased rapidly in mature pollen. GUS activity was also detected in pollen tubes of transgenic tobacco. No GUS activity was found in other floral and vegetable tissues. These results indicate that the PSG076 promoter directs pollen-specific activity at late stages of pollen development and pollen tube growth. Deletion analysis showed that a 0.4 kb fragment of the promoter was enough to confer pollen-specific expression.

Keywords

Wheat Pollen-specific promoter PSG076 gene Tobacco Genetic transformation 

Notes

Acknowledgments

This work was supported by the China Postdoctoral Science Foundation (No. 20100471125), the Genetically Modified New Varieties of Major Projects of China (2011ZX08002-004, 2011ZX08010-004, 2009ZX08016-001A, 2009ZX08002-001B, 2009ZX08002-014B, 2009ZX08002-013B), Key Projects of Science and Technology Research of Chinese Ministry of Education (Grant No. 109105) and Key Projects of International Cooperation of Chinese Ministry of Science and Technology (2009DFB30340).

Supplementary material

11105_2012_458_MOESM1_ESM.doc (846 kb)
ESM 1 (DOC 846 kb)

References

  1. Bate N, Twell D (1998) Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Biol 37:859–869. doi: 10.1023/A:1006095023050 PubMedCrossRefGoogle Scholar
  2. Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  3. Breathnach R, Chambon P (1981) Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem 50:349–383. doi: 10.1146/annurev.bi.50.070181.002025 PubMedCrossRefGoogle Scholar
  4. Chen L, Tu Z, Hussain J, Cong L, Yan Y, Jin L, Yang G, He G (2010) Isolation and heterologous transformation analysis of a pollen-specific promoter from wheat (Triticum aestivum L.). Mol Biol Rep 37:737–744. doi: 10.1007/s11033-009-9582-7 PubMedCrossRefGoogle Scholar
  5. Cook M, Thilmony R (2012) The OsGEX2 gene promoter confers sperm cell expression in transgenic rice. Plant Mol Biol Rep. doi: 10.1007/s11105-012-0429-3
  6. Covey SN, Lomonossoff GP, Hull R (1981) Characterisation of cauliflower mosaic virus DNA sequences which encode major polyadenylated transcripts. Nucleic Acids Res 9:6735–6747PubMedCrossRefGoogle Scholar
  7. Custers JB, Oldenhof MT, Schrauwen JA, Cordewener JH, Wullems GJ, van Lookeren Campagne MM (1997) Analysis of microspore-specific promoters in transgenic tobacco. Plant Mol Biol 35:689–699PubMedCrossRefGoogle Scholar
  8. Digeon JF, Guiderdoni E, Alary R, Michaux-Ferrière N, Joudrier P, Gautier MF (1999) Cloning of a wheat puroindoline gene promoter by IPCR and analysis of promoter regions required for tissue-specific expression in transgenic rice seeds. Plant Mol Biol 39:1101–1112. doi: 10.1023/A:1006194326804 PubMedCrossRefGoogle Scholar
  9. Guerrero FD, Crossland L, Smutzer GS, Hamilton DA, Mascarenhas JP (1990) Promoter sequences from a maize pollen-specific gene direct tissue-specific transcription in tobacco. Mol Gen Genet 24:161–168CrossRefGoogle Scholar
  10. Gupta V, Khurana R, Tyagi AK (2007) Promoters of two anther-specific genes confer organ-specific gene expression in a stage-specific manner in transgenic systems. Plant Cell Rep 26(11):1919–1931. doi: 10.1007/s00299-007-0414-8 PubMedCrossRefGoogle Scholar
  11. Hamilton DA, Schwarz YH, Mascarenhas JP (1998) A monocot pollen-specific promoter contains separable pollen-specific and quantitative elements. Plant Mol Biol 38:663–669. doi: 10.1023/A:1006083725102 PubMedCrossRefGoogle Scholar
  12. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300. doi: 10.1093/nar/27.1.297 PubMedCrossRefGoogle Scholar
  13. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231CrossRefGoogle Scholar
  14. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907PubMedGoogle Scholar
  15. Jin YF, Bian TF (2004) Isolation and partial characterization of a novel pollen-specific cDNA with multiple polyadenylation sites from wheat. Acta Biochim Biophys Sin (Shanghai) 36:467–476. doi: 10.1093/abbs/36.7.467 CrossRefGoogle Scholar
  16. Kato H, Xie G, Sato Y, Imai R (2010) Isolation of anther-specific gene promoters suitable for transgene expression in rice. Plant Mol Biol Rep 28(3):381–387. doi: 10.1007/s11105-009-0162-8 CrossRefGoogle Scholar
  17. Koltunow AM, Truettner J, Cox KH, Wallroth M, Goldberg RB (1990) Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2:1201–1224. doi: 10.1105/tpc.2.12.1201 PubMedGoogle Scholar
  18. Lang Z, Zhou P, Yu J, Ao G, Zhao Q (2008) Functional characterization of the pollen-specific SBgLR promoter from potato (Solanum tuberosum L.). Planta 227:387–396. doi: 10.1007/s00425-007-0625-9 PubMedCrossRefGoogle Scholar
  19. Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327. doi: 10.1093/nar/30.1.325 PubMedCrossRefGoogle Scholar
  20. Park JI, Hakozaki H, Endo M, Takada Y, Ito H, Uchida M, Okabe T, Watanabe M (2006) Molecular characterization of mature pollen-specific genes encoding novel small cysteine-rich proteins in rice (Oryza sativa L.). Plant Cell Rep 25:466–474PubMedCrossRefGoogle Scholar
  21. Potenza C, Aleman L, Sengupta-Gopalan C (2004) Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. In Vitro Cell Dev Plant 40:1–22. doi: 10.1079/IVP2003477 CrossRefGoogle Scholar
  22. Reese MG, Eeckman FH (1995) Novel neural network algorithms for improved eukaryotic promoter site recognition. Proceedings of the Seventh International Genome Sequencing and Analysis Conference, Hyatt Regency, Hilton Head Island, South CarolinaGoogle Scholar
  23. Rogers HJ, Bate N, Combe J, Sullivan J, Sweetman J, Swan C, Lonsdale DM, Twell D (2001) Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Mol Biol 45:577–585. doi: 10.1023/A:1010695226241 PubMedCrossRefGoogle Scholar
  24. Stacey J, Isaac PG (1994) Isolation of DNA from plants. In: Isaac PG (ed) Methods in molecular biology—protocols for nucleic acid analysis by nonradioactive probes, vol 28. Humana, Totowa, pp 9–15CrossRefGoogle Scholar
  25. Twell D, Yamaguchi J, McCormick S (1990) Pollen-specific gene expression in transgenic plants: coordinate regulation of two different tomato gene promoters during microsporogenesis. Development 109:705–713PubMedGoogle Scholar
  26. Twell D, Yamaguchi J, Wing RA, Ushiba J, McCormick S (1991) Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Dev 5:496–507. doi: 10.1101/gad.5.3.496 PubMedCrossRefGoogle Scholar
  27. Vergne P, Delvallee I, Dumas C (1987) Rapid assessment of microspore and pollen development stage in wheat and maize using DAPI and membrane permeabilization. Stain Technol 62:299–304PubMedGoogle Scholar
  28. Weterings K, Schrauwen J, Wullems G, Twell D (1995) Functional dissection of the promoter of the pollen-specific gene NTP303 reveals a novel pollen-specific, and conserved cis-regulatory element. Plant J 8:55–63. doi: 10.1046/j.1365-313X.1995.08010055.x PubMedCrossRefGoogle Scholar
  29. Zhu Q, Ordiz MI, Dabi T, Beachy RN, Lamb C (2002) Rice TATA binding protein interacts functionally with transcription factor IIB and the RF2a bZIP transcriptional activator in an enhanced plant in vitro transcription system. Plant Cell 14:795–803. doi: 10.1105/tpc.010364 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ling Chen
    • 1
    • 2
  • Yingjie Miao
    • 2
  • Cheng Wang
    • 2
  • Peipei Su
    • 2
  • Tianheng Li
    • 2
  • Rong Wang
    • 2
  • Xinglong Hao
    • 2
  • Guangxiao Yang
    • 2
  • Guangyuan He
    • 2
  • Chunbao Gao
    • 1
  1. 1.Hubei Key Laboratory of Food Crop Germplasm and Genetic ImprovementInstitute of Food Crops, Hubei Academy of Agricultural SciencesHongshan districtChina
  2. 2.China-UK HUST-RRes Genetic Engineering and Genomics Joint Laboratory, The Genetic Engineering International Cooperation Base of Ministry of Science and Technology, Wuhan Part of Plant gene research, the Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and Technology (HUST)WuhanChina

Personalised recommendations