Skip to main content

Advertisement

Log in

Analysis of Differential Proteins Induced by Forchlorfenuron in Wheat

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

To identify differential proteins induced by N-(2-chloro-4-pyridy)-N′-phenylurea or forchlorfenuron (CPPU), two-dimensional electrophoresis was used to study the variations in protein expression of wheat seedlings induced with CPPU. The expressed protein spots were identified by matrix-assisted laser desorption/ionization–time of flight mass spectrometry and protein data bank query. About 800 spots were reproducibly detected in three replicates of each sample. A total of 10 differential proteins were identified, including tRNA delta (2)-isopentenylpyrophosphate transferase (S1), probable peptide ABC transporter ATP-binding protein y4tS (S2), ribosomal RNA large subunit methyltransferase N (S3), microtubule-associated protein 6 (S4), actin-66 (Fragment) (S5), mitochondrial ATP synthase subunit alpha (S6), S-adenosylmethionine synthase 1 (S7), flavin-containing monooxygenase YUCCA4 (S8), GTPase obg (S9), and ribosomal RNA small subunit methyltransferase G (S10). These proteins were closely related to phytohormone synthesis, plant stress response, energy metabolism, protein synthesis, cytoskeleton, and transport. All of these processes may play important roles in wheat seedling development. These findings could provide valuable information for the further study of the functions and underlying mechanism of the action of CPPU. Thus, proteomic analysis revealed that CPPU treatment induces variations in many proteins involved in plant growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

2-DE:

Two-dimensional electrophoresis

ACN:

Acetonitrile

cDNA:

Complementary DNA

CPPU:

N-(2-chloro-4-pyridy)-N′-phenylurea (forchlorfenuron)

DTT:

Dithiothreitol

IEF:

Isoelectric focusing

IPT:

Isopentyl transferase

MALDI:

Matrix-assisted laser desorption/ionization

MS:

Mass spectrometry

PAGE:

Polyacrylamide gel electrophoresis

SDS:

Sodium dodecyl sulfate

TDZ:

N-(1,2,3-thidiazol-5-yl)-N′-phenylurea

TOF:

Time-of-flight

References

  • Akiyoshi DE, Klee H, Amasino RM, Nester EW, Gordon MP (1984) T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci USA 81:5994–5998

    Article  PubMed  CAS  Google Scholar 

  • Björk GR (1995) in: tRNA: structure, biosynthesis, and function (Söll D. and RajBhandary UL., Eds.), pp. 165–205, ASM, Washington

  • Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20(13):1790–1799

    Article  PubMed  CAS  Google Scholar 

  • Damerval C, de Vienne D, Zivy M, Thiellement H (1986) Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat seedlings proteins. Electrophoresis 7:52–54

    Article  CAS  Google Scholar 

  • Ding C, You J, Liu Z, Rehmani MIA, Wang S, Li G, Wang Q, Ding Y (2011) Protomic analysis of low nitrogen stress-responsive proteins in roots of rice. Plant Mol Biol Reporter 29:618–625

    Article  CAS  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  PubMed  CAS  Google Scholar 

  • Falvo S, Acquadro A, Albo AG, America T, Lanteri S (2011) Proteomic analysis of PEG-fractionated UV-C stress–response proteins in globe artichoke. Plant Mol Biol Reporter. doi:10.1007/s11105-011-0325-2

  • Ishikawa S, Maekawa M, Arite T, Onishi K, Takemura I, Kyozuka J (2005) Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol 46:79–86

    Article  PubMed  CAS  Google Scholar 

  • Jiang B, Miao H, Chen S, Zhang S, Chen F, Fang W (2010) The lateral suppressor-like gene, DgLsL, alternated the axillary branching in transgenic chrysanthemum (Chrysanthemum × morifolium) by modulating IAA and GA content. Plant Mol Biol Reporter 28:144–151

    Article  CAS  Google Scholar 

  • Jones B, Gunnerås SA, Petersson SV, Tarkowski P, Graham N, May S, Dolezal K, Sandberg G, Ljung K (2010) Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell 22:2956–2969

    Article  PubMed  CAS  Google Scholar 

  • Kong F, Mao S, Jiang J, Wang J, Fang X, Wang Y (2011) Proteomic changes in newly synthesized Brassica napus allotetraploids and their early generations. Plant Mol Biol Reporter 29:927–935

    Article  CAS  Google Scholar 

  • Kopečný D, Briozzo P, Popelková H, Sebela M, Koncitíková R, Spíchal L, Nisler J, Madzak C, Frébort I, Laloue M, Houba-Hérin N (2010) Phenyl- and benzylurea cytokinins as competitive inhibitors of cytokinin oxidase/dehydrogenase: a structural study. Biochimie 92:1052–62

    Article  PubMed  Google Scholar 

  • Kuraparthy V, Sood S, Dhaliwal HS, Chhuneja P, Gill BS (2007) Identification and mapping of a tiller inhabition gene(tin3) in wheat. Theor and Appl Genet 114:285–294

    Article  CAS  Google Scholar 

  • Kuraparthy V, Sood S, Gill BS (2008) Genomic targeting and mapping of tiller inhibition gene (tin3) of wheat using ESTs and synteny with rice. Funct Integr Genomics 8:33–42

    Article  PubMed  CAS  Google Scholar 

  • Li CJ, Bangerth F (1992) In: Karssen CM, VanLoon LC, Vreugdenhil D (eds) Progress in Plant Growth Regulation. Kluwer Acad, Netherlands, pp 431–436

    Chapter  Google Scholar 

  • Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Fujimoto H, Yuan M, Luo D, Han B, Li J (2003) Control of tillering in rice. Nature 422:618–621

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Wang Q, Ding Y, Li G, Xu J, Wang S (2011) Effects of external ABA, GA3 and NAA on the tiller bud outgrowth of rice is related to changes in endogenous hormones. Plant Mol Biol Reporter 65:247–254

    CAS  Google Scholar 

  • Lynn K, Fernandez A, Aida M, Sedbrook J, Tasaka M, Masson P, Barton MK (1999) The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development 126:469–481

    PubMed  CAS  Google Scholar 

  • McSteen P (2009) Hormonal regulation of branching in grasses. Plant Physiol 149:46–55

    Article  PubMed  CAS  Google Scholar 

  • Michael G, Beringer H (1980) The role of hormones in yield formation 1 In: Proceeding of the 15th Colloquium of the International Potash Institute1 Held in Wageningen, the Netherlands, 28:252–279

  • Miller TD (1992) Growth stage of wheat: identification and understanding improve crop management. Better Crops 76(3):12–17

    Google Scholar 

  • Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 37:128–138

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, Tabata S, Sandberg G, Kakimoto T (2006) Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc Natl Acad Sci USA 103:16598–16603

    Article  PubMed  CAS  Google Scholar 

  • Mochida K, Yoshida T, Sakurai T, Ogihara Y, Shinozaki K (2009) TriFLDB: a database of clustered full-length coding sequences from Triticeae with applications to comparative grass genomics. Plant Physiol 150:1135–1146

    Article  PubMed  CAS  Google Scholar 

  • Mok DWS, Mok MC (2001) Cytokinin metabolism and action. Annu Rev of Plant Physiol and Plant Mol Biol 52:89–118

    Article  CAS  Google Scholar 

  • Mok MC, Mok DWS, Armstrong DJ, Shudo K, Isogai Y, Okamoto T (1982) Cytokinin activity of N-phenyl-N0-1,2,3-thiadiazol-5-ylurea (Thidiazuron). Phytochemistry 21:1509–1511

    CAS  Google Scholar 

  • Müller D, Leyser O (2011) Auxin, cytokinin and the control of shoot branching. Annuals of Bot 107:1203–1212

    Article  Google Scholar 

  • Murthyl BNS, Saxena P (1994) Somatic embryogenesis in peanut (Arachis hypogaea L.): stimulation of direct differentiation of somatic embryos by for chlorfenuron (CPPU). Plant Cell Rep 14(2/3):145–150

    Google Scholar 

  • Otsuga D, DeGuzman B, Prigge MJ, Drews GN, Clark SE (2001) REVOLUTA regulates meristem initiation at lateral positions. Plant J 25:223–236

    Article  PubMed  CAS  Google Scholar 

  • Peng ZS, Yen C, Yang JL (1998) Genetic control of oligo-culms in common wheat. Wheat Inf Serv 26:19–24

    Google Scholar 

  • Qiu W, Liu M, Qian G, Jiang J, Xie L, Zhuo R (2011) An isopentyl transferase gene driven by the stress-inducible rd29A promoter improves salinity stress tolerance in transgenic tobacco. Plant Mol Biol Reporter. doi:10.1007/s11105-011-0337-y

  • Richards RAA (1988) Tiller inhibition gene in wheat and its effect on plant growth. Aust J Agr Res 39:749–757

    Article  Google Scholar 

  • Schumacher K, Schmitt T, Rossberg M, Schmitz G, Theres K (1999) The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proc Natl Acad Sci USA 96:290–295

    Article  PubMed  CAS  Google Scholar 

  • Singh SK, Syamal MM (2001) A short pre-culture soak in thidiazuron or forchlorfenuron improves axillary shoot proliferation in rose micropropagation. Sci Hortic 91:169–177

    Article  CAS  Google Scholar 

  • Spíchal L, Rakova NY, Riefler M, Mizuno T, Romanov GA, Strnad M, Schmülling T (2004) Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol 45:1299–1305

    Article  PubMed  Google Scholar 

  • Spielmeyer W, Richards RA (2004) Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S. Theor Appl Genet 109:1303–1310

    Article  PubMed  CAS  Google Scholar 

  • Su YH, Liu YB, Zhang XS (2011) Auxin-cytokinin interaction regulates meristem development. Mol Plant 4(4):616–625

    Article  PubMed  CAS  Google Scholar 

  • Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C (2003) The OsTB1 gene negatively regulates lateral branching in rice. Plant J 33:513–520

    Article  PubMed  CAS  Google Scholar 

  • Woo YM, Park HJ, Suudi M, Yang JI, Park JJ, Back K, Park YM, An G (2007) Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol Biol 65:125–136

    Article  PubMed  CAS  Google Scholar 

  • Yuan LH, Pan JS, Wang G, Zhu J, Zhang WW, Li Z, He HL, Yang ZN, Cai R, Zhu LH (2010) The cucumber lateral suppressor gene (CLS) is functional associated with axillary meristem initiation. Plant Mol Biol Reporter 28:421–429

    Article  CAS  Google Scholar 

  • Zhang JH, Sun LW, Liu LL, Lian J, An SL, Wang X, Zhang J, Jin JL, Li SY, Xi JH (2010) Proteomic analysis of interactions between the generalist herbivore Spodoptera exigua (Lepidoptera: Noctuidae) and Arabidopsis thaliana. Plant Mol Biol Reporter 28:324–333

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank two anonymous reviewers for helpful comments that improved the manuscript. This project was supported by the National Natural Science Foundation of China (Project no. 31171552) and the Scientific Research Award Foundation for Outstanding Young and Middle-Aged Scientists of Shandong Province of China (Project no. BS2009NY037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deshun Feng.

Additional information

Na Yin and Xin Ma contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, N., Ma, X., Zhang, W. et al. Analysis of Differential Proteins Induced by Forchlorfenuron in Wheat. Plant Mol Biol Rep 30, 949–956 (2012). https://doi.org/10.1007/s11105-011-0403-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-011-0403-5

Keywords

Navigation