Skip to main content
Log in

Characterization and Functional Validation of Tobacco PLC Delta for Abiotic Stress Tolerance

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The role of plant phospholipase C-mediated signaling has been implicated in various phases of plant growth and development. In this study, we report on the isolation and characterization of phospholipase C from tobacco and demonstrate that transcripts of phospholipase C are up-regulated in responses to drought and salt stress. These responses are likely by abscisic acid (ABA). Transgenic tobacco plants overexpressing the phospholipase C protein were found to tolerate higher levels of drought and also salinity stress. This tolerance could be mediated by the regulation of genes downstream to phospholipase mediated signaling. As a demonstration, when tested the transgenic plants showed higher transcript of heat shock factor NtHSF2, heat shock protein HSP70-3 and an AP2 domain transcription factor. Also the transgenic plants showed higher accumulation of sodium in older leaves compared to the young leaves. The present report is the first to demonstrate the role of phospholipase C in salinity stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alam M, Sharmin S, Nabi Z, Mondal SI, Islam S, Nayeem SB, Shoyaib M, Khan H (2010) A putative leucine-rich repeat receptor-like kinase of jute involved in stress response. Plant Mol Biol Rep 28:394–402. doi:10.1007/s11105-009-0166-4

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. polyphenoloxidase in beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed  CAS  Google Scholar 

  • Fu W, Shuai L, Yao J, Yu S, Liu F, Duan D (2010) Molecular cloning and analysis of a cytosolic Hsp70 gene from Enteromorpha prolifera (Ulvophyceae, Chlorophyta). Plant Mol Biol Rep 28:430–437. doi:10.1007/s11105-009-0170-8

    Article  CAS  Google Scholar 

  • Gao C, Wang Y, Liu G, Wang C, Jiang J, Yang C (2010) Cloning of ten peroxidase (POD) genes from Tamarix hispida and characterization of their responses to abiotic stress. Plant Mol Biol Rep 28:77–89. doi:10.1007/s11105-009-0129-9

    Article  Google Scholar 

  • Hirayama T, Ohto C, Mizoguchi T, Shinozaki K (1995) A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc Natl Acad Sci USA 92:3903–3907

    Article  PubMed  CAS  Google Scholar 

  • Hirayama T, Ohto C, Mizoguchi T, Shinozaki K (1997) AtPLC2, a gene encoding phosphoinositide-specific phospholipase C, is constitutively expressed in vegetative and floral tissues in Arabidopsis thaliana. Plant Mol Biol 1:175–180. doi:10.1023/A:1005885230896

    Article  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231. doi:10.1126/science.227.4691.1229

    Article  CAS  Google Scholar 

  • Jellouli N, Jouira HB, Daldoul S, Chenennaoui S, Ghorbel A, Salem AB, Gargouri A (2010) Proteomic and transcriptomic analysis of grapevine PR10 expression during salt stress and functional characterization in yeast. Plant Mol Biol Rep 28:1–8. doi:10.1007/s11105-009-0116-1

    Article  CAS  Google Scholar 

  • Kim YJ, Kim JE, Lee JH, Lee MH, Jung HW, Bahk YY, Hwang BK, Hwang I, Kim WT (2004) The Vr-PLC3 gene encodes a putative plasma membrane-localized phosphoinositide-specific phospholipase C whose expression is induced by abiotic stress in mung bean (Vigna radiata L.). FEBS Lett 556:127–136. doi:10.1016/S0014-5793(03)01388-7

    Article  PubMed  CAS  Google Scholar 

  • Kopka J, Pical C, Gray JE, Muller-Rober B (1998) Molecular and enzymatic characterization of three phosphoinositide-specific phospholipase C isoforms from potato. Plant Physiol 116:239–250. doi:10.1104/pp.116.1.239

    Article  PubMed  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res 8:4321–4325. doi:10.1093/nar/8.19.4321

    Article  PubMed  CAS  Google Scholar 

  • Pandey S, Tiwari SB, Tyagi W, Reddy MK, Upadhyaya KC, Sopory SK (2002) A Ca2+/CaM-dependent kinase from pea is stress regulated and in vitro phosphorylates a protein that binds to AtCaM5 promoter. Eur J Biochem 269:3193–3204. doi:10.1046/j.1432-1033.2002.02994.x

    Article  PubMed  CAS  Google Scholar 

  • Parre E, Ghars MA, Leprince A-S, Thiery L, Lefebvre D, Bordenave M, Richard L, Mazars C, Abdelly C, Savoure A (2007) Calcium signaling via phospholipase C is essential for proline accumulation upon ionic but not nonionic hyperosmotic stresses in Arabidopsis. Plant Physiol 144:503–512. doi:10.1104/pp.106.095281

    Article  PubMed  CAS  Google Scholar 

  • Proust J, Houlne G, Schantz ML, Shen WH, Schantz R (1999) Regulation of biosynthesis and cellular localization of Sp32 annexins in tobacco BY2 cells. Plant Mol Biol 39:361–372. doi:10.1023/A:1006199814795

    Article  PubMed  CAS  Google Scholar 

  • Reddy MK, Nair S, Tewari KK, Mudgil Y, Yadav BS, Sopory SK (1999) Cloning and characterization of a cDNA encoding topoisomerase II in pea and analysis is of its expression in relation to cell proliferation. Plant Mol Biol 41:125–137. doi:10.1023/A:1006352820788

    Article  PubMed  CAS  Google Scholar 

  • Sanchez JP, Chua NH (2001) Arabidopsis PLC1 is required for secondary responses to abscisic acid signals. Plant Cell 13:1143–1154. doi:10.1105/tpc.13.5.1143

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T et al (2002) Monitoring the expression pattern of around 7, 000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics 2:282–291. doi:10.1007/s10142-002-0070-6

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Gonzales RA, Bhattacharyya MK (1995) Characterization of a plasma membrane-associated phosphoinositide-specific phospholipase C from soybean. Plant J 3:381–390. doi:10.1046/j.1365-313X.1995.08030381.x

    Article  Google Scholar 

  • Singh BN, Mudgil Y, Sopory SK, Reddy MK (2003) Molecular characterization of a nuclear topoisomerase II from Nicotiana tabacum that functionally complements a temperature-sensitive topoisomerase II yeast mutant. Plant Mol Biol 5:1063–1076. doi:10.1023/A:1025427700337

    Article  Google Scholar 

  • Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci USA 100:14672–14677. doi:10.1073/pnas.2034667100

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Katagiri T, Hirayama T, Yamaguchi-Shinozaki K, Shinozaki K (2001) Hyperosmotic stress induces a rapid and transient increase in inositol 1,4,5-trisphosphate independent of abscisic acid in Arabidopsis cell culture. Plant Cell Physiol 42:214–222. doi:10.1093/pcp/pce028

    Article  PubMed  CAS  Google Scholar 

  • Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10:368–375. doi:10.1016/j.tplants.2005.06.002

    Article  PubMed  CAS  Google Scholar 

  • Tuteja N, Sopory SK (2008) Chemical signaling under abiotic stress environment in plants. Plant Signal Behav 3(8):525–536

    Article  PubMed  Google Scholar 

  • Venkataraman G, Goswami M, Tuteja N, Reddy MK, Sopory SK (2003) Isolation and characterization of a phospholipase C delta isoform from pea that is regulated by light in a tissue specific manner. Mol Genet Genomics 270:378–386. doi:10.1007/s00438-003-0925-0

    Article  PubMed  CAS  Google Scholar 

  • Vergnolle C, Vaultier MN, Taconnat L, Renou JP, Kader JC, Zachowski A, Ruelland E (2005) The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions. Plant Physiol 139:1217–1233. doi:10.1104/pp.105.068171

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14. doi:10.1007/s00425-003-1105-5

    Article  PubMed  CAS  Google Scholar 

  • Wang C-R, Yang A-F, Yue G-D, Gao Q, Yin H-Y, Zhang J-R (2008) Enhanced expression of phospholipase C 1 (ZmPLC1) improves drought tolerance in transgenic maize. Planta 227:1127–1140. doi:10.1007/s00425-007-0686-9

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Dong J, Liu Y, Gao H (2010) A novel dehydration-responsive element-binding protein from Caragana korshinskii is involved in the response to multiple abiotic stresses and enhances stress tolerance in transgenic tobacco. Plant Mol Biol Rep 28:664–675. doi:10.1007/s11105-010-0196-y

    Article  Google Scholar 

  • Xiong L, Lee Bh, Ishitani M, Lee H, Zhang C, Zhu JK (2001) FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Dev 15:1971–1984. doi:10.1101/gad.891901

    Article  PubMed  CAS  Google Scholar 

  • Zhai S, Sui Z, Yang A, Zhang J (2005) Characterization of a novel phosphoinositide-specific phospholipase C from Zea mays and its expression in Escherichia coli. Biotechnol Lett 11:799–804. doi:10.1007/s10529-005-5802-y

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Department of Biotechnology, Govt. of India (Indo-Belarus) project. For providing the confocal microscope facility (Welcome Grant) and technical help, we are thankful to Dr. Shahid Jameel and Ms. Charu, respectively. We also thank Drs. V. Rajamani, J.K. Tripathi (Jawaharlal Nehru University, New Delhi) for help with ionic measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir K. Sopory.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Representative pictures to show relative salinity and mannitol tolerance of WT and kanamycin-positive T1- NtPLCδ1 tobacco transgenic plants. Seedling growth comparison of WT and T1 transgenic lines (S10 and S11) of 40-day-old seedlings on a control, b 100 mM NaCl, c 200 mM NaCl, d 250 mM NaCl and e 200 mM mannitol, f 400 mM mannitol. (JPEG 68 kb)

High resolution image (TIFF 14025 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripathy, M.K., Tyagi, W., Goswami, M. et al. Characterization and Functional Validation of Tobacco PLC Delta for Abiotic Stress Tolerance. Plant Mol Biol Rep 30, 488–497 (2012). https://doi.org/10.1007/s11105-011-0360-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-011-0360-z

Keywords

Navigation