Advertisement

Plant Molecular Biology Reporter

, Volume 30, Issue 2, pp 488–497 | Cite as

Characterization and Functional Validation of Tobacco PLC Delta for Abiotic Stress Tolerance

  • Manas Kumar Tripathy
  • Wricha Tyagi
  • Mamta Goswami
  • Tanushri Kaul
  • Sneh Lata Singla-Pareek
  • Renu Deswal
  • Malireddy K. Reddy
  • Sudhir K. Sopory
Article

Abstract

The role of plant phospholipase C-mediated signaling has been implicated in various phases of plant growth and development. In this study, we report on the isolation and characterization of phospholipase C from tobacco and demonstrate that transcripts of phospholipase C are up-regulated in responses to drought and salt stress. These responses are likely by abscisic acid (ABA). Transgenic tobacco plants overexpressing the phospholipase C protein were found to tolerate higher levels of drought and also salinity stress. This tolerance could be mediated by the regulation of genes downstream to phospholipase mediated signaling. As a demonstration, when tested the transgenic plants showed higher transcript of heat shock factor NtHSF2, heat shock protein HSP70-3 and an AP2 domain transcription factor. Also the transgenic plants showed higher accumulation of sodium in older leaves compared to the young leaves. The present report is the first to demonstrate the role of phospholipase C in salinity stress tolerance.

Keywords

Salinity Drought Phospholipase C Tobacco Signaling Abscisic acid 

Notes

Acknowledgements

This work was supported by Department of Biotechnology, Govt. of India (Indo-Belarus) project. For providing the confocal microscope facility (Welcome Grant) and technical help, we are thankful to Dr. Shahid Jameel and Ms. Charu, respectively. We also thank Drs. V. Rajamani, J.K. Tripathi (Jawaharlal Nehru University, New Delhi) for help with ionic measurements.

Supplementary material

11105_2011_360_Fig9_ESM.jpg (68 kb)
Fig. S1

Representative pictures to show relative salinity and mannitol tolerance of WT and kanamycin-positive T1- NtPLCδ1 tobacco transgenic plants. Seedling growth comparison of WT and T1 transgenic lines (S10 and S11) of 40-day-old seedlings on a control, b 100 mM NaCl, c 200 mM NaCl, d 250 mM NaCl and e 200 mM mannitol, f 400 mM mannitol. (JPEG 68 kb)

11105_2011_360_MOESM1_ESM.tif (13.7 mb)
High resolution image (TIFF 14025 kb)

References

  1. Alam M, Sharmin S, Nabi Z, Mondal SI, Islam S, Nayeem SB, Shoyaib M, Khan H (2010) A putative leucine-rich repeat receptor-like kinase of jute involved in stress response. Plant Mol Biol Rep 28:394–402. doi: 10.1007/s11105-009-0166-4 CrossRefGoogle Scholar
  2. Arnon DI (1949) Copper enzymes in isolated chloroplasts. polyphenoloxidase in beta vulgaris. Plant Physiol 24:1–15PubMedCrossRefGoogle Scholar
  3. Fu W, Shuai L, Yao J, Yu S, Liu F, Duan D (2010) Molecular cloning and analysis of a cytosolic Hsp70 gene from Enteromorpha prolifera (Ulvophyceae, Chlorophyta). Plant Mol Biol Rep 28:430–437. doi: 10.1007/s11105-009-0170-8 CrossRefGoogle Scholar
  4. Gao C, Wang Y, Liu G, Wang C, Jiang J, Yang C (2010) Cloning of ten peroxidase (POD) genes from Tamarix hispida and characterization of their responses to abiotic stress. Plant Mol Biol Rep 28:77–89. doi: 10.1007/s11105-009-0129-9 CrossRefGoogle Scholar
  5. Hirayama T, Ohto C, Mizoguchi T, Shinozaki K (1995) A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc Natl Acad Sci USA 92:3903–3907PubMedCrossRefGoogle Scholar
  6. Hirayama T, Ohto C, Mizoguchi T, Shinozaki K (1997) AtPLC2, a gene encoding phosphoinositide-specific phospholipase C, is constitutively expressed in vegetative and floral tissues in Arabidopsis thaliana. Plant Mol Biol 1:175–180. doi: 10.1023/A:1005885230896 CrossRefGoogle Scholar
  7. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231. doi: 10.1126/science.227.4691.1229 CrossRefGoogle Scholar
  8. Jellouli N, Jouira HB, Daldoul S, Chenennaoui S, Ghorbel A, Salem AB, Gargouri A (2010) Proteomic and transcriptomic analysis of grapevine PR10 expression during salt stress and functional characterization in yeast. Plant Mol Biol Rep 28:1–8. doi: 10.1007/s11105-009-0116-1 CrossRefGoogle Scholar
  9. Kim YJ, Kim JE, Lee JH, Lee MH, Jung HW, Bahk YY, Hwang BK, Hwang I, Kim WT (2004) The Vr-PLC3 gene encodes a putative plasma membrane-localized phosphoinositide-specific phospholipase C whose expression is induced by abiotic stress in mung bean (Vigna radiata L.). FEBS Lett 556:127–136. doi: 10.1016/S0014-5793(03)01388-7 PubMedCrossRefGoogle Scholar
  10. Kopka J, Pical C, Gray JE, Muller-Rober B (1998) Molecular and enzymatic characterization of three phosphoinositide-specific phospholipase C isoforms from potato. Plant Physiol 116:239–250. doi: 10.1104/pp.116.1.239 PubMedCrossRefGoogle Scholar
  11. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res 8:4321–4325. doi: 10.1093/nar/8.19.4321 PubMedCrossRefGoogle Scholar
  12. Pandey S, Tiwari SB, Tyagi W, Reddy MK, Upadhyaya KC, Sopory SK (2002) A Ca2+/CaM-dependent kinase from pea is stress regulated and in vitro phosphorylates a protein that binds to AtCaM5 promoter. Eur J Biochem 269:3193–3204. doi: 10.1046/j.1432-1033.2002.02994.x PubMedCrossRefGoogle Scholar
  13. Parre E, Ghars MA, Leprince A-S, Thiery L, Lefebvre D, Bordenave M, Richard L, Mazars C, Abdelly C, Savoure A (2007) Calcium signaling via phospholipase C is essential for proline accumulation upon ionic but not nonionic hyperosmotic stresses in Arabidopsis. Plant Physiol 144:503–512. doi: 10.1104/pp.106.095281 PubMedCrossRefGoogle Scholar
  14. Proust J, Houlne G, Schantz ML, Shen WH, Schantz R (1999) Regulation of biosynthesis and cellular localization of Sp32 annexins in tobacco BY2 cells. Plant Mol Biol 39:361–372. doi: 10.1023/A:1006199814795 PubMedCrossRefGoogle Scholar
  15. Reddy MK, Nair S, Tewari KK, Mudgil Y, Yadav BS, Sopory SK (1999) Cloning and characterization of a cDNA encoding topoisomerase II in pea and analysis is of its expression in relation to cell proliferation. Plant Mol Biol 41:125–137. doi: 10.1023/A:1006352820788 PubMedCrossRefGoogle Scholar
  16. Sanchez JP, Chua NH (2001) Arabidopsis PLC1 is required for secondary responses to abscisic acid signals. Plant Cell 13:1143–1154. doi: 10.1105/tpc.13.5.1143 PubMedCrossRefGoogle Scholar
  17. Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T et al (2002) Monitoring the expression pattern of around 7, 000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics 2:282–291. doi: 10.1007/s10142-002-0070-6 PubMedCrossRefGoogle Scholar
  18. Shi J, Gonzales RA, Bhattacharyya MK (1995) Characterization of a plasma membrane-associated phosphoinositide-specific phospholipase C from soybean. Plant J 3:381–390. doi: 10.1046/j.1365-313X.1995.08030381.x CrossRefGoogle Scholar
  19. Singh BN, Mudgil Y, Sopory SK, Reddy MK (2003) Molecular characterization of a nuclear topoisomerase II from Nicotiana tabacum that functionally complements a temperature-sensitive topoisomerase II yeast mutant. Plant Mol Biol 5:1063–1076. doi: 10.1023/A:1025427700337 CrossRefGoogle Scholar
  20. Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci USA 100:14672–14677. doi: 10.1073/pnas.2034667100 PubMedCrossRefGoogle Scholar
  21. Takahashi S, Katagiri T, Hirayama T, Yamaguchi-Shinozaki K, Shinozaki K (2001) Hyperosmotic stress induces a rapid and transient increase in inositol 1,4,5-trisphosphate independent of abscisic acid in Arabidopsis cell culture. Plant Cell Physiol 42:214–222. doi: 10.1093/pcp/pce028 PubMedCrossRefGoogle Scholar
  22. Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10:368–375. doi: 10.1016/j.tplants.2005.06.002 PubMedCrossRefGoogle Scholar
  23. Tuteja N, Sopory SK (2008) Chemical signaling under abiotic stress environment in plants. Plant Signal Behav 3(8):525–536PubMedCrossRefGoogle Scholar
  24. Venkataraman G, Goswami M, Tuteja N, Reddy MK, Sopory SK (2003) Isolation and characterization of a phospholipase C delta isoform from pea that is regulated by light in a tissue specific manner. Mol Genet Genomics 270:378–386. doi: 10.1007/s00438-003-0925-0 PubMedCrossRefGoogle Scholar
  25. Vergnolle C, Vaultier MN, Taconnat L, Renou JP, Kader JC, Zachowski A, Ruelland E (2005) The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions. Plant Physiol 139:1217–1233. doi: 10.1104/pp.105.068171 PubMedCrossRefGoogle Scholar
  26. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14. doi: 10.1007/s00425-003-1105-5 PubMedCrossRefGoogle Scholar
  27. Wang C-R, Yang A-F, Yue G-D, Gao Q, Yin H-Y, Zhang J-R (2008) Enhanced expression of phospholipase C 1 (ZmPLC1) improves drought tolerance in transgenic maize. Planta 227:1127–1140. doi: 10.1007/s00425-007-0686-9 PubMedCrossRefGoogle Scholar
  28. Wang X, Dong J, Liu Y, Gao H (2010) A novel dehydration-responsive element-binding protein from Caragana korshinskii is involved in the response to multiple abiotic stresses and enhances stress tolerance in transgenic tobacco. Plant Mol Biol Rep 28:664–675. doi: 10.1007/s11105-010-0196-y CrossRefGoogle Scholar
  29. Xiong L, Lee Bh, Ishitani M, Lee H, Zhang C, Zhu JK (2001) FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Dev 15:1971–1984. doi: 10.1101/gad.891901 PubMedCrossRefGoogle Scholar
  30. Zhai S, Sui Z, Yang A, Zhang J (2005) Characterization of a novel phosphoinositide-specific phospholipase C from Zea mays and its expression in Escherichia coli. Biotechnol Lett 11:799–804. doi: 10.1007/s10529-005-5802-y CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Manas Kumar Tripathy
    • 1
    • 2
  • Wricha Tyagi
    • 1
  • Mamta Goswami
    • 1
  • Tanushri Kaul
    • 1
  • Sneh Lata Singla-Pareek
    • 1
  • Renu Deswal
    • 2
  • Malireddy K. Reddy
    • 1
  • Sudhir K. Sopory
    • 1
    • 3
  1. 1.Plant Molecular Biology Group, International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
  2. 2.Department of BotanyUniversity of DelhiDelhiIndia
  3. 3.Jawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations