Plant Molecular Biology Reporter

, Volume 30, Issue 2, pp 247–260 | Cite as

Molecular Mechanisms of Pathogenesis and Resistance to the Bacterial Pathogen Erwinia amylovora, Causal Agent of Fire Blight Disease in Rosaceae

  • M. Awais Khan
  • Youfu (Frank) Zhao
  • Schuyler S. Korban
Review Article


Fire blight, caused by the necrogenic Gram-negative bacterium Erwinia amylovora, is one of the most destructive bacterial diseases of apple (Malus × domestica) and pear (Pyrus communis), among other members of the Rosaceae family. This disease poses a major economic threat to pome production as there are no available effective control measures. Genetic enhancement of fire blight resistance in apples is the best alternative for averting disease damage, loss of crop, and loss of whole trees. In this review, current knowledge of the molecular mechanisms of E. amylovora pathogenesis will be presented, especially those of effector proteins during bacterial–host interactions, as well as assessment of current understanding of the molecular controls of plant host resistance. Recent studies are elucidating how type III effectors modulate plant susceptibility and promote growth and dissemination of the pathogen. The large multidomain protein DspE is essential for E. amylovora pathogenesis and plays an additional role(s) in inhibiting salicylic acid-mediated innate immunity. On the other hand, the apple host defends itself against E. amylovora invasion by relying on quantitative resistance genes that likely respond to and/or complex with E. amylovora effectors. Thus far, a total of 27 quantitative trait loci (QTL) linked to fire blight resistance have been identified in different apple genetic backgrounds and in response to different E. amylovora strains. In addition to quantitative genetic approaches, microarray analysis of E. amylovora-challenged apple genotypes identified differential transcriptional expression in susceptible and resistant apples. Mechanisms of bacterial pathogenicity and plant host resistance offer intriguing scenarios as to how effector proteins in E. amylovora interact with groups of genes for resistance in the apple host, particularly when considering that these quantitative genes have small effects in plant defense against the invading bacterial pathogen. This collective knowledge will provide insights into bacterial pathogenesis and plant host resistance, as well as highlight implications and opportunities for developing fire blight-resistant apple cultivars.


Malus × domestica Host–pathogen interactions Bacterial pathogenesis QTLs for disease resistance Rosaceae Fire blight Erwinia amylovora 



This work was partially funded by a grant received from USDA–NIFA–SCRI grant AG 2009-51181-06023 (SSK) and USDA–NIFA grant no. 2010-65110-20497 (YFZ), both from the USDA National Institute of Food and Agriculture.


  1. Aldwinckle HS, Norelli JL (2000) Transgenic pomaceous fruit with fire blight resistance. US Patent 6100453Google Scholar
  2. Aldwinckle HS, Van der Zwet T (1979) Recent progress in breeding for fire blight resistance in apples and pears in North America. EPPO Bull 9:13–25CrossRefGoogle Scholar
  3. Asselin JE, Bonasera JM, Kim JF, Oh C-S, Beer SV (2011) Eop1 from a Rubus strain of Erwinia amylovora functions as a host-range limiting factor. Phytopathology. doi: 10.1094/PHYTO-12-10-0339
  4. Baldo A, Norelli JL, FarrellJr RE, Bassett CL, Aldwinckle HS, Malnoy M (2010) Identification of genes differentially expressed during interaction of resistant and susceptible apple cultivars (Malus × domestica) with Erwinia amylovora. BMC Biotech 10:41CrossRefGoogle Scholar
  5. Baumgartner I, Franck L, Silvestri G, Patocchi A, Duffy B, Frey J, Kellerhals M (2010) Advanced strategies for breeding fire blight resistant high quality apples. Proc. 14th Ecofruit Conference, University of Hohenheim/Germany, 31–37Google Scholar
  6. Beavis WD (1998) QTL analyses: power, precision, and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC, New York, pp 145–162Google Scholar
  7. Bocsanczy AM, Nissinen RM, Oh C-S, Beer SV (2008) HrpN of Erwinia amylovora functions in the translocation of DspA/E into plant cells. Mol Plant Pathol 9:425–434PubMedCrossRefGoogle Scholar
  8. Bogdanove AJ, Bauer DW, Beer SV (1998) Erwinia amylovora secretes DspE, a pathogenicity factor and functional AvrE homolog, through the Hrp (type III secretion) pathway. J Bacteriol 180:2244–2247PubMedGoogle Scholar
  9. Bonn WG, Van der Zwet T (2000) Distribution and economic importance of fire blight. In: Vanneste JL (ed) Fire blight: the disease and its causative agent, Erwinia amylovora. CABI, New York, pp 37–55CrossRefGoogle Scholar
  10. Boureau T, El-Maarouf-Bouteau H, Garnier A, Brisset M-N, Perino C, Pucheu I, Barny M-A (2006) DspA/E, a type III effector essential for Erwinia amylovora pathogenicity and growth in planta, induces cell death in host apple and non-host tobacco plants. Mol Plant Microbe Interact 19:16–24PubMedCrossRefGoogle Scholar
  11. Boureau T, Siamer S, Perino C, Gaubert S, Patrit O, Degrave A, Fagard M, Chevreau E, Barny MA (2011) The HrpN effector of Erwinia amylovora, which is involved in type III translocation, contributes directly or indirectly to callose elicitation on apple leaves. Mol Plant Microbe Interact 24:577–584PubMedCrossRefGoogle Scholar
  12. Calenge F, Durel C-E (2006) Both stable and unstable QTLs for resistance to powdery mildew are detected in apple after four years of field assessments. Mol Breed 17:329–339CrossRefGoogle Scholar
  13. Calenge F, Faure A, Goerre M, Gebhardt C, Van de Weg WE, Parisi L, Durel C-E (2004) Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology 94:370–379PubMedCrossRefGoogle Scholar
  14. Calenge F, Drouet D, Denancé C, Van de Weg WE, Brisset M-N, Paulin JP, Durel C-E (2005) Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies. Theor Appl Genet 111(1):128–135PubMedCrossRefGoogle Scholar
  15. Chrisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814CrossRefGoogle Scholar
  16. Degrave A, Fagard M, Perino C, Brisset M, Gaubert S, Laroche S, Patrit O, Barny M (2008) Erwinia amylovora type three-secreted proteins trigger cell death and defense responses in Arabidopsis thaliana. Mol Plant Microbe Interact 21:1076–1086PubMedCrossRefGoogle Scholar
  17. Dirlewanger E, Pronier V, Parvery C, Rothan C, Guye A, Monet R (1998) Genetic linkage map of peach [Prunus persica (L.) Batsch] using morphological and molecular markers. Theor Appl Genet 97:888–895CrossRefGoogle Scholar
  18. Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arus P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101:9891–9896PubMedCrossRefGoogle Scholar
  19. Dunemann F, Peil A, Urbanietz A, Garcia-Libreros T (2007) Mapping of the apple powdery mildew resistance gene Pl1 and its genetic association with an NBS–LRR candidate resistance gene. Plant Breed 126:476–481CrossRefGoogle Scholar
  20. Durel CE, van de Weg WE, Venisse JS, Parisi L (2000) Localisation of a major gene for apple scab resistance on the European genetic map of the Prima × Fiesta cross. IOBC WPRS Bull 23:245–246Google Scholar
  21. Durel C-E, Denancé C, Brisset MN (2009) Two distinct major QTL for resistance to fire blight co-localize on linkage group 12 in apple genotypes ‘Evereste’ and Malus floribunda clone 821. Genome 52:139–147PubMedCrossRefGoogle Scholar
  22. Erdin N, Tartarini S, Broggini GAL, Gennari F, Sansavini S, Gessler C, Patocchi A (2006) Mapping of the apple scab-resistance gene Vb. Genome 49:1238–1245PubMedCrossRefGoogle Scholar
  23. Fazio G, Aldwinckle HS, McQuinn RP, Robinson TL (2006) Differential susceptibility to fire blight in commercial and experimental apple rootstock cultivars. Acta Hort 704:527–530Google Scholar
  24. Gardner RG, Cummins JN, Aldwinckle HS (1980) Fire blight resistance in the Geneva apple rootstock breeding programme. J Am Soc Hort Sci 105:907–912Google Scholar
  25. Gaudriault S, Malandrin L, Paulin JP, Barny MA (1997) DspA, an essential pathogenicity factor of Erwinia amylovora showing homology with AvrE of Pseudomonas syringae, is secreted via Hrp secretion pathway in a DspB-dependent way. Mol Microbiol 26:1057–1069PubMedCrossRefGoogle Scholar
  26. Geider K (2000) Exopolysaccharides of Erwinia amylovora: structure, biosynthesis, regulation, role in pathogenicity of amylovoran and levan. In: Vanneste JL (ed) Fire blight: the disease and its causative agent, Erwinia amylovora. CABI, New York, pp 117–140CrossRefGoogle Scholar
  27. Gessler C, Patocchi A (2007) Recombinant DNA technology in apple. Adv Biochem Eng Biotechnol 107:113–132PubMedGoogle Scholar
  28. Gianfranceschi L, Koller B, Seglias N, Kellerhals M, Gessler C (1996) Molecular selection in apple for resistance to scab caused by Venturia inaequalis. Theor Appl Genet 93:199–204CrossRefGoogle Scholar
  29. Han Y, Korban SS (2010) Strategies for map-based cloning in apple. Crit Rev Plant Sci 29:265–284CrossRefGoogle Scholar
  30. Hasler T, Schaerer HJ, Holliger E, Vogelsanger J, Vignutelli A, Schoch B (2002) Fire blight situation in Switzerland. Acta Hort 590:73–79Google Scholar
  31. James CM, Clarke JB, Evans KM (2004) Identification of molecular markers linked to the mildew resistance gene Pl-d in apple. Theor Appl Genet 110:175–181PubMedCrossRefGoogle Scholar
  32. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329PubMedCrossRefGoogle Scholar
  33. Jung G, Kroch PW, Nienhuis J, Coyne DP, Ariyarathne HM, Arnaud-Santana E (1999) Confirmation of QTL associated with common bacterial blight resistance in four different genetic backgrounds in common bean. Crop Sci 39:1448–1455CrossRefGoogle Scholar
  34. Kellerhals M, Spuhler M, Patocchi A, Frey J (2009) Selection efficiency in apple breeding. Acta Hort 814:177–183Google Scholar
  35. Keller-Przybyłkowicz S, Lewandowski M, Korbin M (2009) Molecular screening of apple (Malus domestica) cultivars and breeding clones for their resistance to fire blight. J Fruit Ornam Plant Res 17:31–43Google Scholar
  36. Kenis K, Keulemans J (2005) Genetic linkage maps of two apple cultivars (Malus × domestica Borkh.) based on AFLP and microsatellite markers. Mol Breed 15:205–219CrossRefGoogle Scholar
  37. Khan MA, Duffy B, Gessler C, Patocchi A (2006) QTL mapping of fire blight resistance in apple. Mol Breed 17:299–306CrossRefGoogle Scholar
  38. Khan MA, Durel C-E, Duffy B, Drouet D, Kellerhals M, Gessler C, Patocchi A (2007) Development of molecular markers linked to the ‘Fiesta’ linkage group 7 major QTL for fire blight resistance and their application for marker-assisted selection. Genome 50:568–577PubMedCrossRefGoogle Scholar
  39. Koczan JM, McGrath M, Zhao YF, Sundin GW (2009) The contribution of the exopolysaccharide amylovoran and levan to biofilm formation: implication in pathogenicity. Phytopathology 99:1237–1244PubMedCrossRefGoogle Scholar
  40. Korban SS, Ries SM, Klopmeyer MJ, Morrisey JF, Hattermann DR (1988) Genotypic responses of scab-resistant apple cultivars/selections to two strains of Erwinia amylovora and the inheritance of resistance to fire blight. J Ann Biol 113:101–105CrossRefGoogle Scholar
  41. Kube M, Migdoll AM, Müller I, Kuhl H, Beck A, Reinhardt R, Geider K (2008) The genome of Erwinia tasmaniensis strain Et1/99, a non-pathogenic bacterium in the genus Erwinia. Environ Microbiol 10:2211–2222PubMedCrossRefGoogle Scholar
  42. Kube M, Migdoll AM, Gehring I, Heitmann K, Mayer Y, Kuhl H, Knaust F, Geider K, Reinhardt R (2010) Genome comparison of the epiphytic bacteria Erwinia billingiae and E. tasmaniensis with the pear pathogen E. pyrifoliae. BMC Genomics 11:393PubMedCrossRefGoogle Scholar
  43. Le Roux P-M, Khan MA, Duffy B, Patocchi A, Broggini GAL, Gessler C (2010) Quantitative trait loci mapping of fire blight resistance in the apple cultivars ‘Florina’ and ‘NovaEasygro’. Genome 53:710–722PubMedCrossRefGoogle Scholar
  44. Lespinasse Y, Aldwinckle HS (2000) Breeding for resistance to fire blight. In: Vanneste JL (ed) Fire blight: the disease and its causative agent, Erwinia amylovora. CABI, New York, pp 253–265CrossRefGoogle Scholar
  45. Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh). Mol Breed 10:217–241CrossRefGoogle Scholar
  46. Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003) Creating a saturated reference map for the apple (Malus × domestica Borkh) genome. Theor Appl Genet 106:1497–1508PubMedGoogle Scholar
  47. Maliepaard C, Alston F, Van Arkel G, Brown L, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, Van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, Den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-Van Ginkel M, King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila) using multiallelic markers. Theor Appl Genet 97:60–73CrossRefGoogle Scholar
  48. McManus PS, Stockwell VO, Sundin GW, Jones AL (2002) Antibiotic use in plant agriculture. Annu Rev Phytopathol 40:443–463PubMedCrossRefGoogle Scholar
  49. Meng X, Bonasera JM, Kim JF, Nissinen RM, Kim W-S, Beer SV (2006) Apple proteins that interact with DspA/E, a pathogenicity effector of Erwinia amylovora, the fire blight pathogen. Mol Plant Microbe Interact 19:53–61PubMedCrossRefGoogle Scholar
  50. Momol MT, Aldwinckle HS (2000) Genetic diversity and host range in strains of Erwinia amylovora. In: Vanneste JL (ed) Fire blight: the disease and its causative agent, Erwinia amylovora. CABI, New York, pp 55–72CrossRefGoogle Scholar
  51. Nakka S, Qi M, Zhao YF (2010a) The Erwinia amylovora PhoPQ system is involved in resistance to antimicrobial peptide and suppresses gene expression of two novel type III secretion systems. Microbiol Res 165:665–673PubMedCrossRefGoogle Scholar
  52. Nakka S, Qi M, Zhao YF (2010b) The PmrAB system in Erwinia amylovora renders the pathogen more susceptible to polymyxin B and more resistance to excess iron. Res Microbiol 161:153–157PubMedCrossRefGoogle Scholar
  53. Nissinen RM, Ytterberg AJ, Bogdanove AJ, van Wijk KJ, Beer SV (2007) Analyses of the secretomes of Erwinia amylovora and selected hrp mutants reveal novel type III secreted proteins and an effect of HrpJ on extracellular harpin levels. Mol Plant Pathol 8:55–67PubMedCrossRefGoogle Scholar
  54. Norelli JL, Aldwinkle HS, Beer SV (1984) Differential host X pathogen interactions among cultivars of apple and strains of Erwinia amylovora. Phytopathology 74:136–139CrossRefGoogle Scholar
  55. Norelli JL, Jones AL, Aldwinckle HS (2003) Fire blight management in the twenty-first century. Plant Dis 87:756–765CrossRefGoogle Scholar
  56. Norelli JL, Lalli DA, Bassett CL, Wisniewski ME, Gardiner SE, Celton JM, Bowatte DR, Carlisle CM, Malnoy M, Aldwinckle HS, Farrell RE Jr, Baldo AM, Horner MB, Bus VGM (2009) Using functional genomics to identify molecular markers for fire blight resistance (Erwinia amylovora) in apple (Malus). Acta Hort 839:415–420Google Scholar
  57. Oh C-S, Beer SV (2005) Molecular genetics of Erwinia amylovora involved in the development of fire blight. FEMS Microbiol Lett 253:185–192PubMedCrossRefGoogle Scholar
  58. Oh CS, Beer SV (2007) AtHIPM, an ortholog of the apple HrpN-interacting protein, is a negative regulator of plant growth and mediates the growth-enhancing effect of HrpN in Arabidopsis. Plant Physiol 145:426–436PubMedCrossRefGoogle Scholar
  59. Oh C-S, Kim JF, Beer SV (2005) The Hrp pathogenicity island of Erwinia amylovora and identification of three novel genes required for systemic infection. Mol Plant Pathol 6:125–138PubMedCrossRefGoogle Scholar
  60. Oh C-S, Martin G, Beer SV (2007) DspA/E, a type III effector of Erwinia amylovora, is required for early rapid growth in Nicotiana benthamiana and causes NbSGT1-dependent cell death. Mol Plant Pathol 8:255–265PubMedCrossRefGoogle Scholar
  61. Ozrenk K, Balta F, Guleryuz M, Kan T (2011) Fire blight (Erwinia amylovora) resistant/susceptibility of native apple germplasm from eastern Turkey. Crop Protect 30:526–530Google Scholar
  62. Park DH, Thapa SP, Choi BS, Kim WS, Hur JH, Cho JM, Lim JS, Choi IY, Lim CK (2011) Complete genome sequence of Japanese Erwinia strain Ejp617, a bacterial shoot blight pathogen of pear. J Bacteriol 193:586–587PubMedCrossRefGoogle Scholar
  63. Parravicini G, Gessler C, Denance C, Lasserre-Zuber P, Vergne E, Brisset MN, Patocchi A, Durel CE, Broggini GAL (2011) Identification of serine/threonine kinase and nucleotide-binding site–leucine-rich repeat (NBS–LRR) genes in the fire blight resistance quantitative trait locus of apple cultivar ‘Evereste’. Mol Plant Pathol. doi: 10.1111/J.1364-3703.2010.00690.X
  64. Peil A, Garcia-Libreros T, Richter K, Trognitz FC, Trognitz B, Hanke M-V, Flachowsky H (2007) Strong evidence for a fire blight resistance gene of Malus robusta located on linkage group 3. Plant Breed 126:470–475CrossRefGoogle Scholar
  65. Peil A, Richter K, Garcia-Libreros T, Hanke V, Flachowsky H, Celton J-M, Horner M, Gardiner S, Bus V (2008) Confirmation of the fire blight QTL of Malus × robusta 5 on linkage group 3. Acta Hort 793:297–303Google Scholar
  66. Powney R, Smits TH, Sawbridge T, Frey B, Blom J, Frey JE, Plummer KM, Beer SV, Luck J, Duffy B, Rodoni B (2011) Genome sequence of an Erwinia amylovora strain with restricted pathogenicity to Rubus plants. J Bacteriol 193:795–796CrossRefGoogle Scholar
  67. Qi M, Sun F, Caetano-Anolles G, Zhao YF (2010) Comparative genomic and phylogenetic analyses reveal the evolution of core two-component signal transduction systems in enterobacteria. J Mol Evol 70:167–180CrossRefGoogle Scholar
  68. Reboutier D, Frankart C, Briand J, Biligui B, Laroche S, Rona JP, Barny MA, Bouteau F (2007) The HrpN Harpin from Erwinia amylovora triggers differential responses on the nonhost Arabidopsis thaliana cells and on the host apple cells. Mol Plant Microbe Interact 20:94–100PubMedCrossRefGoogle Scholar
  69. Sarowar S, Zhao YF, Guerra R, Ali S, Zheng D, Wang DP, Korban SS (2011) Expression profiles of differentially regulated genes during early stages of apple flower infection with Erwinia amylovora. J Exp Bot. doi: 10.1093/jxb/err147
  70. Schouten HJ, Krens FA, Jacobsen E (2006) Cisgenic plants are similar to traditionally bred plants: international regulations for genetically modified organisms should be altered to exempt cisgenesis. EMBO Rep 7:750–753PubMedCrossRefGoogle Scholar
  71. Sebaihia M, Bocsanczy AM, Biehl BS, Quail MA, Perna NT, Glasner JD, DeClerck GA, Cartinhour S, Schneider DJ, Bentley SD, Parkhill J, Beer SV (2010) Complete genome sequence of the plant pathogen Erwinia amylovora strain ATCC 49946. J Bacteriol 192:2020–2021PubMedCrossRefGoogle Scholar
  72. Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel C-E, Tartarini S, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genet Genomes 2:202–224CrossRefGoogle Scholar
  73. Smits THM, Rezzonico F, Kamber T, Blom J, Goesmann A, Frey JE, Duffy B (2010a) Complete genome sequence of the fire blight pathogen Erwinia amylovora CFBP 1430 and comparison to other Erwinia spp. Mol Plant Microbe Interact 23:384–393PubMedCrossRefGoogle Scholar
  74. Smits THM, Jaenicke S, Rezzonico F, Kamber T, Goesmann A, Frey JE, Duffy B (2010b) Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163T 106 and comparative genomic insights into plant pathogenicity. BMC Genomics 11:2PubMedCrossRefGoogle Scholar
  75. Smits THM, Rezzonico F, Pelludat C, Goesmann A, Frey JE, Duffy B (2011) Evolutionary insights from Erwinia amylovora genomics. J Biotech. doi: 10.1016/j.jbiotec.2010.10.075
  76. Soria-Guerra RE, Rosales-Mendoza S, Gasic K, Wisniewski ME, Band M, Korban SS (2011) Gene expression is highly regulated in early developing fruit of apple. Plant Mol Biol Rep. doi: 10.1007/s11105-011-0300-y
  77. Tartarini S, Sansavini S (2003) The use of molecular markers in pome fruit breeding. Acta Hort 622:129–140Google Scholar
  78. Thomson SV (2000) Epidemiology of fire blight. In: Vanneste JL (ed) Fire blight: the disease and its causative agent, Erwinia amylovora. CABI, New York, pp 9–36CrossRefGoogle Scholar
  79. Triplett L, Zhao YF, Sundin GW (2006) Genetic differences among blight-causing Erwinia species with differing host specificities identified by suppression subtractive hybridization. Appl Environ Microbiol 72:7359–7364PubMedCrossRefGoogle Scholar
  80. Triplett LR, Melotto M, Sundin GW (2009) Functional analysis of the N terminus of the Erwinia amylovora secreted effector DspA/E reveals features required for secretion, translocation, and binding to the chaperone DspB/F. Mol Plant Microbe Interact 22:1282–1292PubMedCrossRefGoogle Scholar
  81. Van der Zwet T, Beer SV (1991) Fire blight—its nature, prevention, and control: a practical guide to integrated disease management. US Department of Agriculture, Agriculture Information Bulletin No. 631, p. 83Google Scholar
  82. Vanneste JL (2000) What is fire blight? What is Erwinia amylovora? How to control it? In: Vanneste JL (ed) Fire blight: the disease and its causative agent, Erwinia amylovora. CABI, New York, pp 1–6CrossRefGoogle Scholar
  83. Wang D, Korban SS, Zhao YF (2009) The Rcs phosphorelay system is essential for pathogenicity in Erwinia amylovora. Mol Plant Pathol 10:277–290PubMedCrossRefGoogle Scholar
  84. Wang D, Korban SS, Zhao YF (2010) Molecular signature of differential virulence in natural isolates of Erwinia amylovora. Phytopathology 100:192–198PubMedCrossRefGoogle Scholar
  85. Wang D, Korban SS, Pusey L, Zhao YF (2011a) Characterization of the RcsC sensor kinase from Erwinia amylovora and other enterobacteria. Phytopathology 101:701–717Google Scholar
  86. Wang D, Korban SS, Sundin GW, Clough S, Toth I, Zhao YF (2011b) Regulatory genes and environmental regulation of amylovoran biosynthesis in Erwinia amylovora. Acta Hort 896:195–202Google Scholar
  87. Wei ZM, Laby RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV (1992) Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85–88PubMedCrossRefGoogle Scholar
  88. Wei ZM, Kim JF, Beer SV (2000) Regulation of hrp genes and type III protein secretion in Erwinia amylovora by HrpX/HrpY, a novel two component system, and HrpS. Mol Plant Microbe Interact 13:1251–1262PubMedCrossRefGoogle Scholar
  89. Zhao YF, Blumer SE, Sundin GW (2005) Identification of Erwinia amylovora genes induced during infection of immature pear tissue. J Bacteriol 187:8088–8103PubMedCrossRefGoogle Scholar
  90. Zhao YF, He SY, Sundin GW (2006) The Erwinia amylovora avrRpt2EA gene contributes to virulence on pear and AvrRpt2EA is recognized by Arabidopsis RPS2 when expressed in Pseudomonas syringae. Mol Plant Microbe Interact 19:644–654PubMedCrossRefGoogle Scholar
  91. Zhao YF, Sundin GW, Wang DP (2009a) Construction and analysis of pathogenicity island deletion mutants in Erwinia amylovora. Can J Microbiol 55:457–464PubMedCrossRefGoogle Scholar
  92. Zhao YF, Wang D, Nakka S, Sundin GW, Korban SS (2009b) Systems-level analysis of two-component signal transduction systems in Erwinia amylovora: role in virulence, regulation of amylovoran biosynthesis and swarming motility. BMC Genomics 10:245PubMedCrossRefGoogle Scholar
  93. Zhao YF, Qi M, Wang D (2011) Evolution and function of flagellar and non-flagellar type III secretion systems in Erwinia amylovora. Acta Hort 896:177–184Google Scholar
  94. Zhuang J, Yao Q-H, Xiong AS, Zhang J (2011) Isolation, phylogeny and expression patterns of AP2-like genes in apple (Malus × domestica Borkh.). Plant Mol Biol Rep 29:209–216CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • M. Awais Khan
    • 1
  • Youfu (Frank) Zhao
    • 2
  • Schuyler S. Korban
    • 1
  1. 1.Department of Natural Resources & Environmental SciencesUniversity of IllinoisUrbanaUSA
  2. 2.Department of Crop SciencesUniversity of IllinoisUrbanaUSA

Personalised recommendations