Plant Molecular Biology Reporter

, Volume 29, Issue 4, pp 961–971 | Cite as

Mining EST-Derived SSR Markers to Assess Genetic Diversity in Cassava (Manihot esculenta Crantz)

  • Meiling Zou
  • Zhiqiang Xia
  • Peng Ling
  • Yang Zhang
  • Xin Chen
  • Zusheng Wei
  • Weiping Bo
  • Wenquan Wang


Cassava (Manihot esculenta Crantz) is a very important staple and industrial crop in tropical and subtropical regions of the world. The paucity of markers is a serious limitation in marker-assisted breeding. A total of 35,992 expressed sequence tags (ESTs) from cassava, which were clustered in 13,173 unigenes, were used in this study. A total of 1,889 microsatellites were identified, with an average density of one simple sequence repeats (SSRs) every 4.40 kb. Of the 1,058 designed EST-SSRs from cultivars SC06, TMS60444, and W14, 431 were polymorphic. Then, 31 randomly selected EST-SSRs from the 431 polymorphic EST-SSRs were used to evaluate the genetic diversity of 76 cassava accessions. A total of 93 alleles were identified, and the number detected for each EST-SSR ranged from one to four. Based on the 93 alleles, the 76 cassava accessions could be classified into six groups, and the genetic similarity coefficient ranged from 0.55 to 0.94. This study demonstrated the potential of EST-derived SSRs in cassava. The resources developed in this study enriched the available molecular markers for cassava.


DNA markers Microsatellite Cassava EST-SSR 



This work was supported by the National Key Technology R & D Program (Pre 973) No. 2006CB708204. The authors wish to thank M. Ishitani, J. Tohme, M. Fregene, and other researchers from GeneTrop for their involvement in the development of the cassava EST database. We also thank Dr Bin Liu and F. Claude for their valuable comments on the manuscript.

Supplementary material

11105_2011_299_MOESM1_ESM.doc (1 mb)
Appendix 1 Features of new set of polymorphic EST-SSR markers developed. The data provided represent detail of the new SSR markers, e.g., marker name, repeat type, primer sequence, annealing temperature, and expected product size (DOC 1,042 kb)


  1. Akano O, Dixon A, Mba C, Barrera E, Fregene M (2002) Genetic mapping of a dominant gene conferring resistance to cassava mosaic disease. Theor Appl Genet 105:521–525PubMedCrossRefGoogle Scholar
  2. Arnold C, Rossetto M, McNally J, Henry RJ (2002) The application of SSRs characterized for grape (Vitis vinifera) to conservation studies in Vitaceae. Am J Bot 89:22–28PubMedCrossRefGoogle Scholar
  3. Bang TC, Raji AA, Ingelbrecht IL (2010) A Multiplex microsatellite marker kit for diversity assessment of large cassava (Manihot esculenta Crantz) germplasm collections. Plant Mol Biol Rep. doi: 10.1007/s11105-010-0273-2 Google Scholar
  4. Chabane K, Varshney RK, Graner A, Valkoun J (2008) Generation and exploitation of EST-derived SSR markers for assaying molecular diversity in durum wheat populations. Genet Resour Crop Evol 55:869–881CrossRefGoogle Scholar
  5. Chen X, Xia ZQ, Fu YH, Lu C, Wang WQ (2010) Constructing a genetic linkage map using an F1 population of non-inbred parents in cassava (Manihot esculenta Crantz). Plant Mol Biol Rep 28:676–683CrossRefGoogle Scholar
  6. Cordeiro GM, Casu R, McIntyre CL, Manners JM, Henry RJ (2001) Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci 160:1115–1123PubMedCrossRefGoogle Scholar
  7. El-Sharkawy MA (2004) Cassava biology and physiology. Plant Mol Biol 56:481–501PubMedCrossRefGoogle Scholar
  8. Eujayl I, Sorrells M, Baum M, Wolters P, Powell W (2001) Assessment of genotypic variation among cultivated durum wheat based on EST-SSRs and genomic SSRs. Euphytica 119:39–43CrossRefGoogle Scholar
  9. Feng S, Li W, Huang H, Wang J, Wu Y (2009) Development, characterization and cross-species/genera transferability of EST-SSR markers for rubber tree (Hevea brasiliensis). Mol Breed 23:85–97CrossRefGoogle Scholar
  10. Fregene M, Angel F, Gomez R, Roduriguez F, Chavarriaga P, Bonierbale M, Roca W, Tohme J (1997) A molecular genetic map of cassava (Manihot esculenta Crantz). Theor Appl Genet 95:431–441CrossRefGoogle Scholar
  11. Gong L, Deng Z (2010) EST-SSR markers for gerbera (Gerbera hybrida). Mol Breed 26:125–132CrossRefGoogle Scholar
  12. Gupta PK, Rustgi S (2004) Molecular markers from the transcribed/expressed region of the genome in higher plants. Funct Integr Genomics 4:139–162PubMedCrossRefGoogle Scholar
  13. Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Gen Genomics 270:315–323CrossRefGoogle Scholar
  14. Hackauf B, Wehling P (2002) Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed 121:17–25CrossRefGoogle Scholar
  15. Hamada H, Kakunaga T (1982) Potential Z-DNA forming sequences are highly dispersed in the human genome. Nature 298:396–398PubMedCrossRefGoogle Scholar
  16. Han Z, Wang C, Song X, Guo W, Gou J, Li C, Chen X, Zhang T (2006) Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet 112:430–439PubMedCrossRefGoogle Scholar
  17. Hanai LR, Santini L, Camargo LEA, Fungaro MHP, Gepts P, Tsai SM, Vieira MLC (2010) Extension of the core map of common bean with EST-SSR, RGA, AFLP, and putative functional markers. Mol Breed 25:25–45PubMedCrossRefGoogle Scholar
  18. He C, Poysa V, Yu K (2003) Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theor Appl Genet 106:363–373PubMedGoogle Scholar
  19. Jennings DL, Iglesias C (2002) Breeding for crop improvement. In: Hillocks RJ, Thresh MJ, Bellotti AC (eds) Cassava: biology, production and utilisation. CABI, Oxford, pp 149–166CrossRefGoogle Scholar
  20. Jorge V, Fregene M, Duque MC, Bonierbale MW, Tohme J, Verdier V (2000) Genetic mapping of resistance to bacterial blight disease in cassava (Manihot esculenta Crantz). Theor Appl Genet 101:865–872CrossRefGoogle Scholar
  21. Jorge V, Fregene M, Velez CM, Duque MC, Tohme J, Verdier V (2001) QTL analysis of field resistance to Xanthomonas axonopodis pv. manihotis in cassava. Theor Appl Genet 102:564–571CrossRefGoogle Scholar
  22. Kunkeaw S, Yoocha T, Sraphet S, Boonchanawiwat A, Boonseng O, Lightfoot DA, Triwitayakorn K, Tangphatsornruang S (2010) Construction of a genetic linkage map using simple sequence repeat markers from expressed sequence tags for cassava (Manihot esculenta Crantz). Mol Breed 27:67–75CrossRefGoogle Scholar
  23. Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44:397–401PubMedGoogle Scholar
  24. Lokko Y, Danquah EY, Offei SK, Dixon AGO, Gedil MA (2005) Molecular markers associated with a new source of resistance to the cassava mosaic disease. Afr J Biotechnol 4:873–881Google Scholar
  25. Lopez C, Jorge V, Piégu B, Mba C, Cortes D, Restrepo S, Soto M, Laudié M, Berger C, Cooke R, Delseny M, Tohme J, Verdier V (2004) A unigene catalogue of 5,700 expressed genes in cassava. Plant Mol Biol 56:541–554PubMedCrossRefGoogle Scholar
  26. López CE, Quesada-Ocampo LM, Bohórquez A, Duque MC, Vargas J, Tohme J, Verdier V (2007) Mapping EST-derived SSRs and ESTs involved in resistance to bacterial blight in Manihot esculenta. Genome 50:1078–1088PubMedCrossRefGoogle Scholar
  27. Lowe AJ, Moule C, Trick M, Edwards KJ (2004) Efficient largescale development of SSRs for marker and mapping applications in Brassica crop species. Theor Appl Genet 108:1103–1112PubMedCrossRefGoogle Scholar
  28. Mba REC, Stephenson P, Edwards K, Melzer S, Nkumbira J, Gullberg U, Apel K, Gale M, Tohme J, Fregene M (2001) Simple sequence repeat (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome: towards an SSR-based molecular genetic map of cassava. Theor Appl Genet 102:21–31CrossRefGoogle Scholar
  29. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323PubMedCrossRefGoogle Scholar
  30. Nei M (1978) Estimation of average heterozygosity and genetic distance for small number of individuals. Genetics 89:583–590PubMedGoogle Scholar
  31. Okogbenin E, Fregene M (2002) Genetic analysis and QTL mapping of early root bulking in an F1 population from non-inbred parents in cassava (Manihot esculenta Crantz). Theor Appl Genet 106:58–66PubMedGoogle Scholar
  32. Paniego N, Echaide M, Muñz M, Fernádez L, Torales S, Faccio P, Fuxan I, Carrera M, Zandomeni R, Suáez EY, Hopp HE (2002) Microsatellite isolation and characterization in sunflower (Helianthus annuus L.). Genome 45:34–43PubMedCrossRefGoogle Scholar
  33. Park YH, Alabady MS, Ulloa M, Sickler B, Wilkins TA, Yu J, Stelly DM, Kohel RJ, el-Shihy OM, Cantrell RG (2005) Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population. Mol Genet Genomics 274:428–441PubMedCrossRefGoogle Scholar
  34. Picoult-Newberg L, Ideker TE, Pohl MG, Taylor SL, Donaldson MA, Nickerson DA, Boyce-Jacino M (1999) Mining SNPs from EST databases. Genome Res 9:167–174PubMedGoogle Scholar
  35. Poncet V, Rondeau M, Tranchant C, Cayrel A, Hamon S, Kochko A, Hamon P (2006) SSR mining in coffee tree EST databases: potential use of EST-SSRs as markers for the Coffea genus. Mol Genet Genomics 276:436–449PubMedCrossRefGoogle Scholar
  36. Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222Google Scholar
  37. Raji AAJ, Anderson JV, Kolade OA, Ugwu CD, Dixon AGO, Ingelbrecht IL (2009) Gene-based microsatellites for cassava (Manihot esculenta Crantz): prevalence, polymorphisms, and cross-taxa utility. BMC Plant Biol 9:118PubMedCrossRefGoogle Scholar
  38. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Meth Mol Biol 132:365–386Google Scholar
  39. Saha S, Karaca M, Jenkins JN, Zipf AE, Reddy OUK, Kantety RV (2003) Simple sequence repeats as useful resources to study transcribed genes of cotton. Euphytica 130:355–364CrossRefGoogle Scholar
  40. Saha MC, Rouf Mian MA, Eujayl I, Zwonitzer JC, Wang L, May GD (2004) Tall fescue EST-SSR markers with transferability across several grass species. Theor Appl Genet 109:783–791PubMedCrossRefGoogle Scholar
  41. Sakurai T, Plata G, Zapata FR, Seki M, Salcedo A, Toyoda A, Ishiwata A, Tohme J, Sakaki Y, Shinozaki K, Ishitani M (2007) Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response. BMC Plant Biol 7:66PubMedCrossRefGoogle Scholar
  42. Salem KFM, Varshney RK, Röder MS, Röder A (2010) EST-SSR based estimates on functional genetic variation in a barley (Hordeum vulgare L.) collection from Egypt. Genet Resour Crop Evol 57:515–521CrossRefGoogle Scholar
  43. Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, Lee LS, Henry RJ (2000) Analysis of SSRs derived from grape ESTs. Theor Appl Genet 100:723–726CrossRefGoogle Scholar
  44. Sethy NK, Choudhary S, Shokeen B, Bhatia S (2006) Identification of microsatellite markers from Cicer reticulatum: molecular variation and phylogeneti-c analysis. Theor Appl Genet 112:347–357PubMedCrossRefGoogle Scholar
  45. Sharopova N, McMullen MD, Schultz L, Schroeder S, Villeda HS, Gardiner J, Bergstrom D, Houchins K, Hancock SM, Musket T, Duru N, Polacco M, Edwards K, Ruff T, Register JC, Brouwer C, Thompson R, Velasco R, Chin E, Lee M, Clikeman WW, Long MJ, Liscum E, Cone K, Davis G, Coe EH (2002) Development and mapping of SSR markers for maize. Plant Mol Biol 48:463–481PubMedCrossRefGoogle Scholar
  46. Stewart CN, Via LE (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14(5):748–749PubMedGoogle Scholar
  47. Swapna M, Sivaraju K, Sharma RK, Singh NK (2010) Single-strand conformational polymorphism of EST-SSRs: a potential tool for diversity analysis and varietal identification in sugarcane. Plant Mol Biol Rep. doi: 10.1007/s11105-010-0254-5 Google Scholar
  48. Tangphatsornruang S, Sraphet S, Singh R, Okogbenin E, Fregene M, Triwitayakorn K (2008) Development of polymorphic markers from expressed sequence tags of Manihot esculenta Crantz. Mol Ecol Res 8:682–685CrossRefGoogle Scholar
  49. Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452PubMedCrossRefGoogle Scholar
  50. Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422PubMedGoogle Scholar
  51. Vekemans X, Lefèbvre C (1997) On the evolution of heavy metal-tolerant populations in Armeria maritima: evidence from allozyme variation and reproductive barriers. J Evol Biol 10:175–191CrossRefGoogle Scholar
  52. Xie RJ, Zhou J, Wang GY, Zhang SM, Chen L, Gao ZS (2010) Cultivar identification and genetic diversity of Chinese bayberry (Myrica rubra) accessions based on fluorescent SSR markers. Plant Mol Biol Rep. doi: 10.1007/s11105-010-0261-6 Google Scholar
  53. Yi G, Lee JM, Lee S, Choi D, Kim BD (2006) Exploitation of pepper EST-SSRs and an SSR-based linkage map. Theor Appl Genet 114:113–130PubMedCrossRefGoogle Scholar
  54. Yu JK, Rota ML, Kantety RV, Sorrells ME (2004) EST derived SSR markers for comparative mapping in wheat and rice. Mol Gen Genomics 271:742–751CrossRefGoogle Scholar
  55. Zhang R, Zhu AD, Wang XJ, Yu J, Zhang HR, Gao JS, Cheng YJ, Deng XX (2010) Development of Juglans regia SSR markers by data mining of the EST database. Plant Mol Biol Rep 28:646–653CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Meiling Zou
    • 1
    • 4
  • Zhiqiang Xia
    • 1
    • 4
  • Peng Ling
    • 2
  • Yang Zhang
    • 1
    • 4
  • Xin Chen
    • 1
  • Zusheng Wei
    • 3
  • Weiping Bo
    • 1
    • 4
  • Wenquan Wang
    • 1
  1. 1.The Institute of Tropical Biosciences and Biotechnology (ITBB)Chinese Academy of Tropical Agricultural Sciences (CATAS)HaikouPeople’s Republic of China
  2. 2.Citrus Research and Education Center (CREC)University of Florida (UF)GainesvilleUSA
  3. 3.Tropical Crops Genetic Resources Institute (TCGRI)Chinese Academy of Tropical Agricultural Sciences (CATAS)DanzhouPeople’s Republic of China
  4. 4.Hainan UniversityHaikouPeople’s Republic of China

Personalised recommendations