Plant Molecular Biology Reporter

, Volume 29, Issue 2, pp 324–333 | Cite as

Molecular Cloning and Characterization of a Novel Gossypium barbadense L. RAD-Like Gene

  • Fei Zhang
  • Xiang Liu
  • Kaijing Zuo
  • Jieqiong Zhang
  • Xiaofen Sun
  • Kexuan Tang


Cotton fiber development is controlled by MYB family transcription factors. Here, we identify a SANT/MYB transcription factor from Gossypium barbadens, designated as \GbRL1. The full-length cDNA of GbRL1 contains an open-reading frame of 243 bp, encoding a protein of 81 amino acids with a calculated molecular mass of 9.32 kDa and an isoelectric point of 6.72. Sequence alignment shows that GbRL1 has high homology with other single SANT/MYB domain-containing genes, especially the RADIALIS (RAD) genes in Antirrhinum majus and Bournea leiophylla. Expression analysis reveals that at the seedling stage, GbRL1 is strongly expressed in roots but weakly in leaves and stamens. In 0-day post-anthesis (DPA) flowers, the expression of GbRL1 is strong in the petals and ovules, moderate in stamens. In ovules, during early fiber development, GbRL1 has high expression level at fiber initiation stage (−3 and 0 DPA) but low level at fiber elongation stage (3, 5, and 8 DPA). In addition, we also detect the expression of GbRL1 in elongating fibers (8 DPA). Promoter analysis indicates that the expression of GbRL1 may be controlled by genes involved in flower organ development and flowering time control, such as AGAMOUS-like genes and FLC gene. The overexpression of GbRL1 in Arabidopsis causes similar developmental alterations as overexpression of RAD. Together, our results suggest that GbRL1 may not only control flower development as RAD, but also plays an important role in early ovule development and/or fiber initiation in cotton.


Gossypium barbadense L. MYB Ovule Transcription factor Cotton CArG box 



Open-reading frame


Reverse transcript polymerase chain reaction


Days post-anthesis


Single nucleotide polymorphism



This research was supported by the China “973” Program (grant numbers 2004CB117303-3 and 2007CB108805), China “863” Program (grant number 2010AA100503), China Transgenic Research Program (grant number 2008ZX08002-001) and the Shanghai Leading Academic Discipline Project (project number B209).


  1. An C, Saha S, Jenkins JN, Ma DP, Scheffler BE, Kohel RJ, Yu JZ, Stelly DM (2008) Cotton (Gossypium spp.) R2R3-MYB transcription factors SNP identification, phylogenomic characterization, chromosome localization, and linkage mapping. Theor Appl Genet 116:1015–1026PubMedCrossRefGoogle Scholar
  2. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22:195–201PubMedCrossRefGoogle Scholar
  3. Barg R, Sobolev I, Eilon T, Gur A, Chmelnitsky I, Shabtai S, Grotewold E, Salts Y (2005) The tomato early fruit specific gene Lefsm1 defines a novel class of plant-specific SANT MYB domain proteins. Planta 221:197–211PubMedCrossRefGoogle Scholar
  4. Basra A, Malik CP (1984) Development of the cotton fiber. Int Rev Cytol 89:65–113CrossRefGoogle Scholar
  5. Baxter CE, Costa MM, Coen E (2007) Diversification and co-option of RAD-like genes in the evolution of floral asymmetry. Plant J 52:105–113PubMedCrossRefGoogle Scholar
  6. Clough S, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743PubMedCrossRefGoogle Scholar
  7. Corley SB, Carpenter R, Copsey L, Coen E (2005) Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proc Natl Acad Sci USA 102:5068–5073PubMedCrossRefGoogle Scholar
  8. Costa MMR, Fox S, Hana AI, Baxter C, Coen E (2005) Evolution of regulatory interactions controlling floral asymmetry. Development 132:5093–5101PubMedCrossRefGoogle Scholar
  9. Hamaguchi A, Yamashino T, Koizumi N, Kiba T, Kojima M, Sakakibara H, Mizuno T (2008) A small subfamily of Arabidopsis RADIALIS-LIKE SANT/MYB genes: a link to HOOKLESS1-mediated signal transduction during early morphogenesis. Biosci Biotechnol Biochem 72:2687–2696PubMedCrossRefGoogle Scholar
  10. Hasenfratz MP, Tsou CL, Wilkins TA (1995) Expression of two related vacuolar (H+)-ATPase 16-kilodalton proteolipid genes is differentially regulated in a tissue-specific manner. Plant Physiol 108:1395–1404PubMedCrossRefGoogle Scholar
  11. Helliwell CA, Wood CC, Robertson M, Peacock WJ, Dennis ES (2006) The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J 46:183–192PubMedCrossRefGoogle Scholar
  12. Hosoda K, Imamura A, Katoh E, Hatta T, Tachiki M, Yamada H, Mizuno T, Yamazaki T (2002) Molecular structure of the GARP family of plant Myb-related DNA binding motifs of the Arabidopsis response regulators. Plant Cell 14:2015–2029PubMedCrossRefGoogle Scholar
  13. Huang H, Tudor M, Su T, Zhang Y, Hu Y, Ma H (1996) DNA binding properties of two Arabidopsis MADS domain proteins:binding consensus and dimer formation. Plant Cell 8:81–94PubMedCrossRefGoogle Scholar
  14. Kamiya N, Nagasaki H, Morikami A, Sato Y, Matsuoka M (2003) Isolation and characterization of a rice WUSCHEL-type homoebox gene that is specifically expressed in the central cells of a quiescent center in the root apical meristem. Plant J 35:429–441PubMedCrossRefGoogle Scholar
  15. Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL Repository and associated resources. Nucleic Acids Res 37:387–392CrossRefGoogle Scholar
  16. Kim HJ, Triplett BA (2001) Cotton fiber growth in planta and in vitro: models for plant cell elongation and cell wall biogenesis. Plant Physiol 127:1361–1366PubMedCrossRefGoogle Scholar
  17. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245PubMedCrossRefGoogle Scholar
  18. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  19. Lee J, Woodward A, Chen J (2007) Gene expression changes and early events in cotton fibre development. Ann Bot 100:1391–1401PubMedCrossRefGoogle Scholar
  20. Liu X, Zuo K, Zhang F, Li Y, Xu J, Zhang L, Sun X, Tang K (2009) Identification and expression profile of GbAGL2, a C-class gene from Gossypium barbadense. J Biosci 34:941–951PubMedCrossRefGoogle Scholar
  21. Liu X, Zuo KJ, Xu JT, Li Y, Zhang F, Yao HY, Wang Y, Chen Y, Qiu CX, Sun XF, Tang KX (2010) Functional analysis of GbAGL1, a D-lineage gene from cotton (Gossypium barbadense). J Exp Bot 61:1193–1203PubMedCrossRefGoogle Scholar
  22. Machado AC, Wu YR, Yang YM, Llewellyn DJ, Dennis ES (2009) The MYB transcription factor GhMYB25 regulates early fibre and trichome development. Plant J 59:52–62PubMedCrossRefGoogle Scholar
  23. Pagnussat GC, Yu HJ, Ngo QA, Rajani S, Mayalagu S, Johnson CS, Capron A, Xie LF, Ye D, Sundaresan V (2005) Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132:603–614PubMedCrossRefGoogle Scholar
  24. Peitsch MC (1995) Protein modeling by E-Mail. Bio/Technology 13:658–660CrossRefGoogle Scholar
  25. Perez-Rodriguez M, Jaffe FW, Butelli E, Glover BJ, Martin C (2005) Development of three different cell types is associated with the activity of a specific MYB transcription factor in the ventral petal of Antirrhinum majus flowers. Development 132:359–370PubMedCrossRefGoogle Scholar
  26. Pu L, Li Q, Fan X, Yang W, Xue Y (2008) The R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development. Genetics 180:811–820PubMedCrossRefGoogle Scholar
  27. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual (3rd edn.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  28. Stevenson CE, Burton N, Costa M, Nath U, Dixon RA, Coen ES, Lawson DM (2005) Crystallization and preliminary X-ray analysis of the RAD protein from Antirrhinum majus. Acta Crystallogr F Struct Biol Cryst Commun 61:885–888CrossRefGoogle Scholar
  29. Stevenson CE, Burton N, Costa MM, Nath U, Dixon RA, Coen ES, Lawson DM (2006) Crystal structure of the MYB domain of the RAD transcription factor from Antirrhinum majus. Proteins 65:1041–1045PubMedCrossRefGoogle Scholar
  30. Suo J, Liang X, Pu L, Zhang Y, Xue Y (2003) Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.). Biochim Biophys Acta 1630:25–34PubMedGoogle Scholar
  31. Tiwari SC, Wilkins TA (1995) Cotton (Gossypium hirsutum) seed trichomes expand via diffuse growing mechanism. Can J Bot 73:746–757Google Scholar
  32. Tucker-Kellogg L, Rould MA, Chambers KA, Ades SE, Sauer RT, Pabo CO (1997) Engrailed (Gln50→Lys) homeodomain-DNA complex at 1.9 Å resolution: structural basis for enhanced affinity and altered specificity. Structure 5:1047–1054PubMedCrossRefGoogle Scholar
  33. Wang S, Wang JW, Yu N, Li CH, Luo B, Gou JY, Wang LJ, Chen XY (2004) Control of plant trichome development by a cotton fiber MYB gene. Plant Cell 16:2323–2334PubMedCrossRefGoogle Scholar
  34. Wang Y, Qiu C, Zhang F, Guo B, Miao Z, Sun X, Tang K (2009) Molecular cloning, expression profiling and functional analyses of a cDNA encoding isopentenyl diphosphate isomerase from Gossypium barbadense. Biosci Rep 29:111–119PubMedCrossRefGoogle Scholar
  35. Wilkins TA, Jernstedt JA (1999) Molecular genetics of developing cotton fibers. In: Basra AM (ed) Cotton fibers. Hawthorne Press, New York, pp 231–267Google Scholar
  36. Wu Y, Llewellyn DJ, White R, Ruggiero K, Al-Ghazi Y, Dennis ES (2007) Laser capture microdissection and cDNA microarrays used to generate gene expression profiles of the rapidly expanding fibre initial cells on the surface of cotton ovules. Planta 226:1475–1490PubMedCrossRefGoogle Scholar
  37. Wu Y, Machado AC, White RG, Llewellyn DJ, Dennis ES (2006) Expression profiling identifies genes expressed early during lint fibre initiation in cotton. Plant Cell Physiol 47:107–127PubMedCrossRefGoogle Scholar
  38. Zhou XR, Wang YZ, Smith JF, Chen R (2008) Altered expression patterns of TCP and MYB genes relating to the floral developmental transition from initial zygomorphy to actinomorphic in Bournea (Gesneriaceae). New Phytol 178:532–543PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Fei Zhang
    • 1
  • Xiang Liu
    • 1
  • Kaijing Zuo
    • 1
  • Jieqiong Zhang
    • 1
  • Xiaofen Sun
    • 2
  • Kexuan Tang
    • 1
  1. 1.Plant Biotechnology Research Center, Fudan–SJTU–Nottingham Plant Biotechnology R& D Center, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations