Plant Molecular Biology Reporter

, Volume 28, Issue 4, pp 578–587 | Cite as

Impact of Mapped SSR Markers on the Genetic Diversity of Apricot (Prunus armeniaca L.) in Tunisia

  • Hedia Bourguiba
  • Lamia Krichen
  • Jean-Marc Audergon
  • Bouchaib Khadari
  • Neila Trifi-Farah


The impact of mapped microsatellites on the study of genetic diversity of Tunisian apricot accessions was assessed. The genetic variability of 47 traditional apricot cultivars originating from several areas in Tunisia was investigated with 32 polymorphic microsatellite loci selected for their location throughout the eight linkage groups of Prunus genome. The higher polymorphism and greater transportability of these markers among Prunus species were proved by the expected heterozygosity (He = 0.56) and Shannon’s index of diversity (I = 1.05), indicating that Tunisian apricot germplasm maintained a substantial level of genetic diversity. According to their geographical origin, the genetic differentiation among groups (north, center, and south; Fst = 0.04) was lower, while the gene flow among groups was consequent (Nm = 4.79), attesting a narrow genetic background of apricot in the country. Both unweighted pair-group method with arithmetic mean dendrogram, based on Nei’s genetic distances and factorial correspondence analysis, separated northern cultivars from central and southern cultivars, revealing the same molecular basis of apricot material in the Center and the South of Tunisia. These results revealed the efficiency of mapped markers for genetic variability measurements compared to randomly ones, however, no advantage was observed considering the genetic relationships among studied accessions.


Genetic diversity Linkage groups Mapped markers Microsatellites Prunus armeniaca L. 



Amplified fragment length polymorphism


Deoxyribonucleic acid


Factorial correspondence analysis


Linkage group


Polymerase chain reactions


Simple sequence repeat


Unweighted pair-group method with arithmetic mean



This work was partially funded by the “Institut Français de Coopération” (project CMCU 05G0904) and by the Tunisian “Ministère de l’Enseignement Supérieur et de la Recherche Scientifique” (Project Lab B02). The authors would like to thank Mr. Sylvain Santoni (SupAgro Montpellier, France) for his involvement in microsatellite genotyping. Authors kindly acknowledge Dr. A. Hadidi (National Germplasm Resources Laboratory, U.S. Department of Agriculture, ARS, Beltsville, MD 20705-2350, USA) for his fruitful comments and for checking the language on the manuscript.


  1. Aranzana MJ, Garcia-Mas J, Carbo J, Arùs P (2002) Development and variability analysis of microsatellite markers in peach. Plant Breed 121:87–92CrossRefGoogle Scholar
  2. Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G et al (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825PubMedGoogle Scholar
  3. Belkhir K, Goudet J, Chikhi L, Bonhomme F (1996–2004) Genetix 4.05, logiciel pour Windows™ pour la génétique des populations. Laboratoire Génome et Populations, CNRS UPR 9060, Université de Montpellier II, Montpellier, FranceGoogle Scholar
  4. Bernatzky R, Tanksley SD (1986) Genetics of actin-related sequences in tomato. Theor Appl Genet 72:314–321CrossRefGoogle Scholar
  5. Carraut A, Crossa-Raynaud P (1974) L’amélioration des variétés d’abricotier en Tunisie. Ann Inst Natl Rech Agron Tunis 47(2):33pGoogle Scholar
  6. Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach (Prunus persica L. Batsch) isolation, characterization and cross-species amplification in Prunus. Theor Appl Genet 99:65–72CrossRefGoogle Scholar
  7. Crossa-Raynaud P (1960) Problèmes d’arboriculture fruitière en Tunisie. Ann Inst Natl Rech Agron Tunis 33:39–63Google Scholar
  8. Decroocq V, Fave MG, Hagen L, Bordenave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet 106:912–922PubMedGoogle Scholar
  9. Decroocq V, Foulongne M, Lambert P, Le Gall O, Mantin C, Pascal T et al (2005) Analogues of virus resistance genes map to QTLs for resistance to sharka disease in Prunus davidiana. Mol Genet Genomics 272:680–689CrossRefPubMedGoogle Scholar
  10. Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A et al (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138CrossRefPubMedGoogle Scholar
  11. Dirlewanger E, Cosson P, Howad W, Capdeville G, Bosselu N (2004) Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid—location of root-knot nematode resistance genes. Theor Appl Genet 109:827–832CrossRefPubMedGoogle Scholar
  12. Dirlewanger E, Cosson P, Boudehri K, Renaud C, Capdeville G, Tauzin Y et al (2006) Development of a second-generation genetic linkage map for peach [Prunus persica (L.) Batsch] and characterization of morphological traits affecting flower and fruit. Tree Genet Genomes 3:1–13CrossRefGoogle Scholar
  13. Dondini L, Lain O, Geuna F, Banfi R, Gaiotti F, Tartarini S et al (2007) Development of a new SSR-based linkage map in apricot and analysis of synteny with existing Prunus maps. Tree Genet Genomes 3:239–249CrossRefGoogle Scholar
  14. Francis CY, Yang RC (1993) Popgene version 1.31. http//
  15. Hagen LS, Khadari B, Lambert P, Audergon JM (2002) Genetic diversity in apricot revealed by AFLP markers: species and cultivars comparisons. Theor Appl Genet 105:298–305CrossRefPubMedGoogle Scholar
  16. Hagen LS, Chaib J, Fady B, Decroocq V, Bouchet JP, Lambert P et al (2004) Genomic and cDNA microsatellites from apricot (Prunus armeniaca L.). Mol Ecol Notes 4:742–745CrossRefGoogle Scholar
  17. Joobeur T, Viruel MA, De Vicente MC, Jauregui B, Ballester J, Dettori MT et al (1998) Construction of a saturated linkage map for Prunus using an almond x peach F2 progeny. Theor Appl Genet 97:1034–1041CrossRefGoogle Scholar
  18. Joobeur T, Periam N, De Vicente MC, King GJ, Arùs P (2000) Development of a second generation linkage map for almond using RAPD and SSR markers. Genome 43:649–655CrossRefPubMedGoogle Scholar
  19. Khadari B, Krichen L, Lambert P, Marrakchi M, Audergon JM (2006) Genetic structure in Tunisian apricot populations multiplicated by grafting: a signature of bottleneck effects and ancient propagation by seedlings. Genet Resour Crop Evol 53:811–819CrossRefGoogle Scholar
  20. Krichen L (2001) Prospection et identification des variétés autochtones d’abricotier (Prunus armeniaca L.) à Testour, Ras Jbel et Kairouan. DEA dissertation, Laboratoire d’arboriculture fruitière, Institut National Agronomique de TunisieGoogle Scholar
  21. Krichen L (2007) Les ressources génétiques de l’abricotier en Tunisie et leur relation avec la variabilité méditerranéenne. PhD dissertation, Université Tunis El Manar, Tunisie et Université Montpellier 2, FranceGoogle Scholar
  22. Krichen L, Ben Mimoun M, Hellali R (2006a) Identification and characterization of Tunisian apricot cultivars. Acta Hortic 701(1):241–246Google Scholar
  23. Krichen L, Mnejja M, Arús P, Marrakchi M, Trifi-Farah N (2006b) Use of microsatellite polymorphisms to develop an identification key for Tunisian apricots. Genet Resour Crop Evol 53:1699–1706CrossRefGoogle Scholar
  24. Krichen L, Martins JMS, Lambert P, Daaloul A, Trifi-Farah N, Marrakchi M et al (2008) Using AFLP markers for the analysis of the genetic diversity of apricot cultivars in Tunisia. J Am Soc Hortic Sci 133:204–212Google Scholar
  25. Lambert P, Hagen LS, Arùs P, Audergon JM (2004) Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.) compared with the almond Texas × peach Earlygold reference map for Prunus. Theor Appl Genet 108:1120–1130CrossRefPubMedGoogle Scholar
  26. Liu K, Muse SV (2005) Power Marker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129CrossRefPubMedGoogle Scholar
  27. Lopes MS, Sefc KM, Laimer M, Da Câmara MA (2002) Identification of microsatellite loci in apricot. Mol Ecol Notes 2:24–26CrossRefGoogle Scholar
  28. Maghuly F, Fernandez EB, Ruthner S, Pedryc A, Laimer M (2005) Microsatellite variability in apricots (Prunus armeniaca L.) reflects their geographic origin and breeding history. Tree Genet Genomes 1:151–165CrossRefGoogle Scholar
  29. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  30. Messina R, Lain O, Marrazzo MT, Cipriani G, Testolin R (2004) New set of microsatellite loci isolated in apricot. Mol Ecol Notes 4:432–434CrossRefGoogle Scholar
  31. Mnejja M, Garcia-Mas J, Howad W, Badenes ML, Arús P (2004) Simple-sequence repeat (SSR) markers of Japanese plum (Prunus salicina Lindl.) are highly polymorphic and transferable to peach and almond. Mol Ecol Notes 4:63–165CrossRefGoogle Scholar
  32. Mnejja M, Garcia-Mas J, Howad W, Arús P (2005) Development and transportability across Prunus species of forty-two polymorphic almond microsatellites. Mol Ecol Notes 5:531–535CrossRefGoogle Scholar
  33. Nei M (1972) Genetic distance between populations. Am Nat 106:283–292CrossRefGoogle Scholar
  34. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedGoogle Scholar
  35. Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  36. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  37. Romero C, Pedryc A, Munoz V, Llacer G, Badenes ML (2003) Genetic diversity of different apricot geographical groups determined by SSR markers. Genome 46:244–252CrossRefPubMedGoogle Scholar
  38. Sanchez-Pérez R, Ruiz D, Dicenta F, Egea J, Martinez-Gomez P (2005) Application of simple sequence repeat (SSR) markers in apricot breeding: molecular characterisation, protection, and genetic relationships. Sci Hortic 103:305–315CrossRefGoogle Scholar
  39. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, UrbanaGoogle Scholar
  40. Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD et al (2000) Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 101:421–428CrossRefGoogle Scholar
  41. Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I et al (2000) Microsatellite DNA in Peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520CrossRefPubMedGoogle Scholar
  42. Valdeyron G, Crossa-Raynaud P (1950) Les fruits de Tunisie. Ann Inst Natl Rech Agron Tunis 23:65–82Google Scholar
  43. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1158–1370CrossRefGoogle Scholar
  44. Yamamoto T, Mochida K, Imai T, Shi YZ, Ogiwara T, Hayashi T (2002) Microsatellite markers in peach [Prunus persica (L.) Batsch] derived from an enriched genomic and cDNA libraries. Mol Ecol Notes 2:298–301CrossRefGoogle Scholar
  45. Zhebentyayeva TN, Reighard GL, Gorina VM, Abbott AG (2003) Simple sequences repeat (SSR) analysis for assessment of genetic variability in apricot germplasm. Theor Appl Genet 106:435–444PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Hedia Bourguiba
    • 1
  • Lamia Krichen
    • 1
  • Jean-Marc Audergon
    • 2
  • Bouchaib Khadari
    • 3
  • Neila Trifi-Farah
    • 1
  1. 1.Laboratoire de Génétique Moléculaire, Immunologie et BiotechnologieFaculté des Sciences de Tunis, Campus universitaireEl ManarTunisie
  2. 2.INRA, UR 1052 Génétique et Amélioration des Fruits et Légumes, DomaineMontfavetFrance
  3. 3.INRA, UMR 1098 Développement et Amélioration des PlantesMontpellier cedex 1France

Personalised recommendations