Molecular Cloning and Expression Analysis of an ANS Gene Encoding Anthocyanidin Synthase from Purple-Fleshed Sweet Potato [Ipomoea batatas (L.) Lam]

  • Wei Zhou
  • Chengtao Huang
  • Yifu Gong
  • Qili Feng
  • Feng Gao


Anthocyanidin synthase (ANS), a 2-oxoglutarate (2OG) iron-dependent oxygenase, catalyzes the penultimate step in the biosynthesis of anthocyanin. This reaction is responsible for the formation of the colored anthocyanidins from the colorless leucoanthocyanidins. A full-length cDNA was isolated from purple-fleshed sweet potato (Ipomoea batatas (L.) Lam) cv. Yamakawamurasaki, designated IbANS, containing a 1,086-bp open reading frame encoding a 362-amino-acid polypeptide. Multiple alignments revealed that the deduced IbANS protein had high identity to ANS proteins of other plants such as Ipomoea nil (90.8% identities), Ipomoea purpurea (91.4% identities), and Brassica juncea (72.7% identities). Structural analysis showed that the IbANS protein might belong to the 2OG and Fe(II)-dependent oxygenase, containing three binding sites of 2OG (H236, D238, and H292) and three binding sites of Fe(II) (Y221, R302, and S304). Phylogenetic tree analysis revealed that IbANS shared the close relationships with I. nil and I. purpurea. Southern blotting showed that there were two copies of the IbANS gene in this genome. Real-time quantitative polymerase chain reaction revealed that expression of the IbANS gene was highest in storage roots and lowest in leaves. IbANS was expressed most abundantly during the formation of storage roots. In five cultivars of sweet potato, IbANS expression was strongly associated with anthocyanin accumulation, suggesting that ANS gene expression was associated with activation of anthocyanin biosynthesis.


Purple-fleshed sweet potato Ipomoea batatas Anthocyanidin synthase Cloning 



open reading frame


rapid amplification of cDNA ends


untranslated region


reverse transcription polymerase chain reaction



This work was funded by the China National Natural Science Foundation (30671320) and Guangdong Natural Science Foundation (05005945).


  1. Bohm BA (1998) Introduction to flavonoids. Harwood Academic, AmsterdamGoogle Scholar
  2. Bogs J, Ebadi A, McDavid D, Robinson SP (2006) Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development. Plant Physiol 140:279–291. doi: 10.1104/pp.105.073262 CrossRefPubMedGoogle Scholar
  3. Boss PK, Davies C, Robinson SP (1996) Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Mol Biol 32:565–569. doi: 10.1007/BF00019111 CrossRefPubMedGoogle Scholar
  4. Chen HJ, Hou WC, Yang CY, Huang DJ, Liu JS, Lin YH (2003) Molecular cloning of two metallothionein-like protein genes with differential expression patterns from sweet potato (Ipomoea batatas) leaves. J Plant Physiol 160:547–555. doi: 10.1078/0176-1617-01040 CrossRefPubMedGoogle Scholar
  5. Chen HJ, Huang DJ, Hou WC, Liu JS, Lin YH (2006) Molecular cloning and characterization of a granulin-containing cysteine protease SPCP3 from sweet potato (Ipomoea batatas) senescent leaves. J Plant Physiol 163:863–876. doi: 10.1016/j.jplph.2005.08.008 CrossRefPubMedGoogle Scholar
  6. Felsenstein J (1992) Estimating effective population size from samples of sequences: a bootstrap Monte Carlo integration method. Genet Res 60:209–220. doi: 10.1017/S0016672300030962 CrossRefPubMedGoogle Scholar
  7. Geourjon C, Deléage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681–684. doi: 10.1093/bioinformatics/11.6.681 PubMedGoogle Scholar
  8. Gong Z, Yamazaki M, Sugiyama M, Tanaka Y, Saito K (1997) Cloning and molecular analysis of structural genes involved in anthocyanin biosynthesis and expressed in a forma-specific manner in Perilla frutescens. Plant Mol Biol 35:915–927. doi: 10.1023/A:1005959203396 CrossRefPubMedGoogle Scholar
  9. Heller W, Forkmann G (1994) Biosynthesis of flavonoids. In: Harborne JB (ed) The flavonoids: advances in research since 1986. Chapman & Hall, London, pp 499–535Google Scholar
  10. Kano M, Takayanagi T, Harada K, Makino K, Ishikawa F (2005) Antioxidative activity of anthocyanins from purple sweet potato, Ipomoea batatas cultivar Ayamurasaki. Biosci Biotechnol Biochem 69:979–988. doi: 10.1271/bbb.69.979 CrossRefPubMedGoogle Scholar
  11. Kim SH, Hamada T (2005) Rapid and reliable method of extracting DNA and RNA from sweetpotato, Ipomoea batatas (L). Lam. Biotechnol Lett 27:1841–1845. doi: 10.1007/s10529-005-3891-2 CrossRefPubMedGoogle Scholar
  12. Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242. doi: 10.1016/j.tplants.2005.03.002 CrossRefPubMedGoogle Scholar
  13. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245. doi: 10.1093/bioinformatics/17.12.1244 CrossRefPubMedGoogle Scholar
  14. Lukacin R, Britsch L (1997) Identification of strictly conserved histidine and arginine residues as part of the active site in Petunia hybrida flavanone 3b-hydroxylase. Eur J Biochem 249:748–757. doi: 10.1111/j.1432-1033.1997.t01-2-00748.x CrossRefPubMedGoogle Scholar
  15. Mano H, Ogasawara F, Sato K, Higo H, Minobe Y (2007) Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato. Plant Physiol 143:1252–1268. doi: 10.1104/pp.106.094425 CrossRefPubMedGoogle Scholar
  16. Marchler-Bauer A, Bryant SH (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32:W327–W331. doi: 10.1093/nar/gkh454 CrossRefPubMedGoogle Scholar
  17. Matsuda J, Okabe S, Hashimoto T, Yamada Y (1991) Molecular cloning of hyoscyamine 6 beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase from cultured roots of Hyoscyamus niger. J Biol Chem 266:9460–9464PubMedGoogle Scholar
  18. Matsui T, Ebuchi S, Kobayashi M, Fukui K, Sugita K, Terahara N, Matsumoto K (2002) Anti-hyperglycemic effect of diacylated anthocyanin derived from Ipomoea batatas cultivar Ayamurasaki can be achieved through the alpha-glucosidase inhibitory action. J Agric Food Chem 50:7244–7248. doi: 10. 1021/jf025913m CrossRefPubMedGoogle Scholar
  19. Muller PY, Janovjak H, Miserez AR, Dobbie Z (2002) Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 32:1372–1379PubMedGoogle Scholar
  20. Pelletier MK, Murrell JR, Shirley BW (1997) Characterization of flavonol synthase and leucoanthocyanidin dioxygenase genes in Arabidopsis. Further evidence for differential regulation of “early” and “late” genes. Plant Physiol 113:1437–1445. doi: 10.1104/pp.113.4.1437 CrossRefPubMedGoogle Scholar
  21. Quattrocchio F, Wing JF, Leppen H, Mol J, Koes RE (1993) Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell 5:1497–1512. doi: 10.1105/tpc.5.11.1497 CrossRefPubMedGoogle Scholar
  22. Quattrocchio F, Wing JF, van der Woude K, Mol JN, Koes R (1998) Analysis of bHLH and MYB domain proteins: species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes. Plant J 13:475–488. doi: 10.1046/j.1365-313X.1998.00046.x CrossRefPubMedGoogle Scholar
  23. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. doi: 0737-4038/870404-0007 PubMedGoogle Scholar
  24. Saito K, Kobayashi M, Gong Z, Tanaka Y, Yamazaki M (1999) Direct evidence for anthocyanidin synthase as a 2-oxoglutarate-dependent oxygenase: molecular cloning and functional expression of cDNA from a red forma of Perilla frutescens. Plant J 17:181–189. doi: 10.1046/j.1365-313X.1999.00365.x CrossRefPubMedGoogle Scholar
  25. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385. doi: 10.1093/nar/gkg520 CrossRefPubMedGoogle Scholar
  26. Shih CH, Chu H, Tang LK, Sakamoto W, Maekawa M, Chu IK, Wang M, Lo C (2008) Functional characterization of key structural genes in rice flavonoid biosynthesis. Planta 228:1043–1054. doi: 10.1007/s00425-008-0806-1 CrossRefPubMedGoogle Scholar
  27. Shimada S, Inoue YT, Sakuta M (2005) Anthocyanidin synthase in non-anthocyanin-producing Caryophyllales species. Plant J 44:950–959. doi: 10.1111/j.1365-313X.2005.02574.x CrossRefPubMedGoogle Scholar
  28. Suda I, Furuta S, Nishiba Y, Yamakawa O, Mastsugano K, Sugita K (1997) Hepato-protective activity of purple-colored sweet potato juice. Sweet Potato Research Front (KNAES, Japan) 4:3Google Scholar
  29. Suda I, Oki T, Masuda M, Nishiba Y, Furuta S, Matsugano K, Sugita K, Terahara N (2002) Direct absorption of acylated anthocyanin in purple-fleshed sweet potato into rats. J Agric Food Chem 50:1672–1676. doi: 10.1021/jf011162x CrossRefPubMedGoogle Scholar
  30. Turnbull JJ, Nakajima J, Welford RW, Yamazaki M, Saito K, Schofield CJ (2004) Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis: anthocyanidin synthase, flavonol synthase, and flavanone 3 beta-hydroxylase. J Biol Chem 279:1206–1216. doi: 10.1074/jbc.M309228200 CrossRefPubMedGoogle Scholar
  31. Welford RW, Clifton IJ, Turnbull JJ, Wilson SC, Schofield CJ (2005) Structural and mechanistic studies on anthocyanidin synthase catalysed oxidation of flavanone substrates: the effect of C-2 stereochemistry on product selectivity and mechanism. Org Biomol Chem 3:3117–3126. doi: 10.1039/b507153d CrossRefPubMedGoogle Scholar
  32. Wellmann F, Griesser M, Schwab W, Martens S, Eisenreich W, Matern U, Lukacin R (2006) Anthocyanidin synthase from Gerbera hybrida catalyzes the conversion of (+)-catechin to cyanidin and a novel procyanidin. FEBS Lett 580:1642–1648. doi: 10.1016/j.febslet.2006.02.004 CrossRefPubMedGoogle Scholar
  33. Wilmouth RC, Turnbull JJ, Welford RW, Clifton IJ, Prescott AG, Schofield CJ (2002) Structure and mechanism of anthocyanidin synthase from Arabidopsis thaliana. Structure 10:93–103. doi: 10.1016/S0969-2126(01)00695-5 CrossRefPubMedGoogle Scholar
  34. Yoshimoto M, Okuno S, Yoshinaga M, Yamakawa O, Yamaguchi M, Yamada J (1999) Antimutagenicity of sweet potato (Ipomoea batatas) roots. Biosci Biotechnol Biochem 63:537–541. doi: 10.1271/bbb.63.537 CrossRefPubMedGoogle Scholar
  35. Zhang Z, Barlow JN, Baldwin JE, Schofiel CJ (1997) Metal-catalyzed oxidation and mutagenesis studies on the iron (II) binding site of 1-aminocyclopropane-1-carboxylate oxidase. Biochemistry 36:15999–16007. doi: 10.1021/bi971823c CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Wei Zhou
    • 1
  • Chengtao Huang
    • 1
  • Yifu Gong
    • 1
    • 2
  • Qili Feng
    • 1
  • Feng Gao
    • 1
  1. 1.Guangdong Key Laboratory of Biotechnology for Plant Development, School of Life SciencesSouth China Normal UniversityGuangzhouPeople’s Republic of China
  2. 2.Faculty of Life Science and BiotechnologyNingbo UniversityNingboPeople’s Republic of China

Personalised recommendations