Skip to main content
Log in

Molecular Cloning and Expression Analysis of an ANS Gene Encoding Anthocyanidin Synthase from Purple-Fleshed Sweet Potato [Ipomoea batatas (L.) Lam]

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Anthocyanidin synthase (ANS), a 2-oxoglutarate (2OG) iron-dependent oxygenase, catalyzes the penultimate step in the biosynthesis of anthocyanin. This reaction is responsible for the formation of the colored anthocyanidins from the colorless leucoanthocyanidins. A full-length cDNA was isolated from purple-fleshed sweet potato (Ipomoea batatas (L.) Lam) cv. Yamakawamurasaki, designated IbANS, containing a 1,086-bp open reading frame encoding a 362-amino-acid polypeptide. Multiple alignments revealed that the deduced IbANS protein had high identity to ANS proteins of other plants such as Ipomoea nil (90.8% identities), Ipomoea purpurea (91.4% identities), and Brassica juncea (72.7% identities). Structural analysis showed that the IbANS protein might belong to the 2OG and Fe(II)-dependent oxygenase, containing three binding sites of 2OG (H236, D238, and H292) and three binding sites of Fe(II) (Y221, R302, and S304). Phylogenetic tree analysis revealed that IbANS shared the close relationships with I. nil and I. purpurea. Southern blotting showed that there were two copies of the IbANS gene in this genome. Real-time quantitative polymerase chain reaction revealed that expression of the IbANS gene was highest in storage roots and lowest in leaves. IbANS was expressed most abundantly during the formation of storage roots. In five cultivars of sweet potato, IbANS expression was strongly associated with anthocyanin accumulation, suggesting that ANS gene expression was associated with activation of anthocyanin biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ORF:

open reading frame

RACE:

rapid amplification of cDNA ends

UTR:

untranslated region

RT-PCR:

reverse transcription polymerase chain reaction

References

  • Bohm BA (1998) Introduction to flavonoids. Harwood Academic, Amsterdam

    Google Scholar 

  • Bogs J, Ebadi A, McDavid D, Robinson SP (2006) Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development. Plant Physiol 140:279–291. doi:10.1104/pp.105.073262

    Article  CAS  PubMed  Google Scholar 

  • Boss PK, Davies C, Robinson SP (1996) Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Mol Biol 32:565–569. doi:10.1007/BF00019111

    Article  CAS  PubMed  Google Scholar 

  • Chen HJ, Hou WC, Yang CY, Huang DJ, Liu JS, Lin YH (2003) Molecular cloning of two metallothionein-like protein genes with differential expression patterns from sweet potato (Ipomoea batatas) leaves. J Plant Physiol 160:547–555. doi:10.1078/0176-1617-01040

    Article  CAS  PubMed  Google Scholar 

  • Chen HJ, Huang DJ, Hou WC, Liu JS, Lin YH (2006) Molecular cloning and characterization of a granulin-containing cysteine protease SPCP3 from sweet potato (Ipomoea batatas) senescent leaves. J Plant Physiol 163:863–876. doi:10.1016/j.jplph.2005.08.008

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1992) Estimating effective population size from samples of sequences: a bootstrap Monte Carlo integration method. Genet Res 60:209–220. doi:10.1017/S0016672300030962

    Article  CAS  PubMed  Google Scholar 

  • Geourjon C, Deléage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681–684. doi:10.1093/bioinformatics/11.6.681

    CAS  PubMed  Google Scholar 

  • Gong Z, Yamazaki M, Sugiyama M, Tanaka Y, Saito K (1997) Cloning and molecular analysis of structural genes involved in anthocyanin biosynthesis and expressed in a forma-specific manner in Perilla frutescens. Plant Mol Biol 35:915–927. doi:10.1023/A:1005959203396

    Article  CAS  PubMed  Google Scholar 

  • Heller W, Forkmann G (1994) Biosynthesis of flavonoids. In: Harborne JB (ed) The flavonoids: advances in research since 1986. Chapman & Hall, London, pp 499–535

    Google Scholar 

  • Kano M, Takayanagi T, Harada K, Makino K, Ishikawa F (2005) Antioxidative activity of anthocyanins from purple sweet potato, Ipomoea batatas cultivar Ayamurasaki. Biosci Biotechnol Biochem 69:979–988. doi:10.1271/bbb.69.979

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Hamada T (2005) Rapid and reliable method of extracting DNA and RNA from sweetpotato, Ipomoea batatas (L). Lam. Biotechnol Lett 27:1841–1845. doi:10.1007/s10529-005-3891-2

    Article  CAS  PubMed  Google Scholar 

  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242. doi:10.1016/j.tplants.2005.03.002

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245. doi:10.1093/bioinformatics/17.12.1244

    Article  CAS  PubMed  Google Scholar 

  • Lukacin R, Britsch L (1997) Identification of strictly conserved histidine and arginine residues as part of the active site in Petunia hybrida flavanone 3b-hydroxylase. Eur J Biochem 249:748–757. doi:10.1111/j.1432-1033.1997.t01-2-00748.x

    Article  CAS  PubMed  Google Scholar 

  • Mano H, Ogasawara F, Sato K, Higo H, Minobe Y (2007) Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato. Plant Physiol 143:1252–1268. doi:10.1104/pp.106.094425

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Bryant SH (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32:W327–W331. doi:10.1093/nar/gkh454

    Article  CAS  PubMed  Google Scholar 

  • Matsuda J, Okabe S, Hashimoto T, Yamada Y (1991) Molecular cloning of hyoscyamine 6 beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase from cultured roots of Hyoscyamus niger. J Biol Chem 266:9460–9464

    CAS  PubMed  Google Scholar 

  • Matsui T, Ebuchi S, Kobayashi M, Fukui K, Sugita K, Terahara N, Matsumoto K (2002) Anti-hyperglycemic effect of diacylated anthocyanin derived from Ipomoea batatas cultivar Ayamurasaki can be achieved through the alpha-glucosidase inhibitory action. J Agric Food Chem 50:7244–7248. doi:10. 1021/jf025913m

    Article  CAS  PubMed  Google Scholar 

  • Muller PY, Janovjak H, Miserez AR, Dobbie Z (2002) Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 32:1372–1379

    CAS  PubMed  Google Scholar 

  • Pelletier MK, Murrell JR, Shirley BW (1997) Characterization of flavonol synthase and leucoanthocyanidin dioxygenase genes in Arabidopsis. Further evidence for differential regulation of “early” and “late” genes. Plant Physiol 113:1437–1445. doi:10.1104/pp.113.4.1437

    Article  CAS  PubMed  Google Scholar 

  • Quattrocchio F, Wing JF, Leppen H, Mol J, Koes RE (1993) Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell 5:1497–1512. doi:10.1105/tpc.5.11.1497

    Article  CAS  PubMed  Google Scholar 

  • Quattrocchio F, Wing JF, van der Woude K, Mol JN, Koes R (1998) Analysis of bHLH and MYB domain proteins: species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes. Plant J 13:475–488. doi:10.1046/j.1365-313X.1998.00046.x

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. doi:0737-4038/870404-0007

    CAS  PubMed  Google Scholar 

  • Saito K, Kobayashi M, Gong Z, Tanaka Y, Yamazaki M (1999) Direct evidence for anthocyanidin synthase as a 2-oxoglutarate-dependent oxygenase: molecular cloning and functional expression of cDNA from a red forma of Perilla frutescens. Plant J 17:181–189. doi:10.1046/j.1365-313X.1999.00365.x

    Article  PubMed  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385. doi:10.1093/nar/gkg520

    Article  CAS  PubMed  Google Scholar 

  • Shih CH, Chu H, Tang LK, Sakamoto W, Maekawa M, Chu IK, Wang M, Lo C (2008) Functional characterization of key structural genes in rice flavonoid biosynthesis. Planta 228:1043–1054. doi:10.1007/s00425-008-0806-1

    Article  CAS  PubMed  Google Scholar 

  • Shimada S, Inoue YT, Sakuta M (2005) Anthocyanidin synthase in non-anthocyanin-producing Caryophyllales species. Plant J 44:950–959. doi:10.1111/j.1365-313X.2005.02574.x

    Article  CAS  PubMed  Google Scholar 

  • Suda I, Furuta S, Nishiba Y, Yamakawa O, Mastsugano K, Sugita K (1997) Hepato-protective activity of purple-colored sweet potato juice. Sweet Potato Research Front (KNAES, Japan) 4:3

  • Suda I, Oki T, Masuda M, Nishiba Y, Furuta S, Matsugano K, Sugita K, Terahara N (2002) Direct absorption of acylated anthocyanin in purple-fleshed sweet potato into rats. J Agric Food Chem 50:1672–1676. doi:10.1021/jf011162x

    Article  CAS  PubMed  Google Scholar 

  • Turnbull JJ, Nakajima J, Welford RW, Yamazaki M, Saito K, Schofield CJ (2004) Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis: anthocyanidin synthase, flavonol synthase, and flavanone 3 beta-hydroxylase. J Biol Chem 279:1206–1216. doi:10.1074/jbc.M309228200

    Article  CAS  PubMed  Google Scholar 

  • Welford RW, Clifton IJ, Turnbull JJ, Wilson SC, Schofield CJ (2005) Structural and mechanistic studies on anthocyanidin synthase catalysed oxidation of flavanone substrates: the effect of C-2 stereochemistry on product selectivity and mechanism. Org Biomol Chem 3:3117–3126. doi:10.1039/b507153d

    Article  CAS  PubMed  Google Scholar 

  • Wellmann F, Griesser M, Schwab W, Martens S, Eisenreich W, Matern U, Lukacin R (2006) Anthocyanidin synthase from Gerbera hybrida catalyzes the conversion of (+)-catechin to cyanidin and a novel procyanidin. FEBS Lett 580:1642–1648. doi:10.1016/j.febslet.2006.02.004

    Article  CAS  PubMed  Google Scholar 

  • Wilmouth RC, Turnbull JJ, Welford RW, Clifton IJ, Prescott AG, Schofield CJ (2002) Structure and mechanism of anthocyanidin synthase from Arabidopsis thaliana. Structure 10:93–103. doi:10.1016/S0969-2126(01)00695-5

    Article  CAS  PubMed  Google Scholar 

  • Yoshimoto M, Okuno S, Yoshinaga M, Yamakawa O, Yamaguchi M, Yamada J (1999) Antimutagenicity of sweet potato (Ipomoea batatas) roots. Biosci Biotechnol Biochem 63:537–541. doi:10.1271/bbb.63.537

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Barlow JN, Baldwin JE, Schofiel CJ (1997) Metal-catalyzed oxidation and mutagenesis studies on the iron (II) binding site of 1-aminocyclopropane-1-carboxylate oxidase. Biochemistry 36:15999–16007. doi:10.1021/bi971823c

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the China National Natural Science Foundation (30671320) and Guangdong Natural Science Foundation (05005945).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Gao.

Additional information

W. Zhou and C. Huang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, W., Huang, C., Gong, Y. et al. Molecular Cloning and Expression Analysis of an ANS Gene Encoding Anthocyanidin Synthase from Purple-Fleshed Sweet Potato [Ipomoea batatas (L.) Lam]. Plant Mol Biol Rep 28, 112–121 (2010). https://doi.org/10.1007/s11105-009-0133-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-009-0133-0

Keywords

Navigation