Plant Molecular Biology Reporter

, Volume 27, Issue 3, pp 381–387 | Cite as

Molecular Cloning and Characterization of a Novel Gossypium hirsutum L. bHLH Gene in Response to ABA and Drought Stresses



The phytohormone ABA was known to play a vital role in modulating plant responses to drought stress, and AtMYC2 (a GhbHLH1 homolog) had been proved to act as transcriptional activator involved in the dehydration and ABA response pathway in Arabidopsis. Here, using AtMYC2 amino acid sequence as a querying probe to screen Gossypium hirsutum L. EST database and contigging the candidate ESTs, the putative full-length cDNA sequence of cotton bHLH transcription factor was assembled and confirmed by amplifying leaves cDNA of drought-treated upland cotton cv Jinmian 19. The full-length cDNA named as GhbHLH1 has an open-reading frame of 2,025 bp, encoding a protein of 674 amino acids with a calculated molecular mass of 73.6 kDa and an isoelectric point of 5.46. Sequence alignment shows that GhbHLH1 contains a 60 amino acid long bHLH domain and have high homology with bHLH domain proteins in Arabidopsis, especially with AtMYC2, which plays an important role in response to stress stimuli. Semi-quantitative RT-PCR reveals that GhbHLH1 is strongly expressed in 7-day- post anthesis fibers but weak in roots, stems, and leaves. Based on real-time quantitative RT-PCR, the expression of GhbHLH1 in leaves was transitorily induced by ABA and PEG treatments, although its transcripts were accumulated in various organs. However, its expression was not affected by salt and cold treatments. Our results may provide the basis for future research of bHLH domain gene’s roles as a regulator of ABA signaling in cotton.


Gossypium hirsutum L. bHLH Stress Transcription factor Cotton 



Basic helix-loop-helix


Open-reading frame


Reverse transcript polymerase chain reaction


Abscisic acid


Polyethylene glycol


Expressed sequence tag



This study is supported by the Program for the State Key Basic Research and Development Plan of China (2007CB108805) and the 111 Project of China (Grant No. B08025).

Supplementary material

11105_2009_112_MOESM1_ESM.doc (72 kb)
Table S1 Overview of 52 expressed sequence tags used in gene cloning of GhbHLH1. (DOC 72 kb)


  1. Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868PubMedCrossRefGoogle Scholar
  2. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78. doi: 10.1105/tpc.006130 PubMedCrossRefGoogle Scholar
  3. Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Paul R, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479. doi: 10.1105/tpc.104.025833 PubMedCrossRefGoogle Scholar
  4. Atchley WR, Terhalle W, Dress A (1999) Positional dependence, cliques, and predictive motifs in the bHLH protein domain. J Mol Evol 48:501–516. doi: 10.1007/PL00006494 PubMedCrossRefGoogle Scholar
  5. Blom N, Sicheritz-Pontén T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4:1633–1649. doi: 10.1002/pmic.200300771 PubMedCrossRefGoogle Scholar
  6. Boter M, Ruiz-Rivero O, Abdeen A, Prat S (2004) Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev 18:1577–1591. doi: 10.1101/gad.297704 PubMedCrossRefGoogle Scholar
  7. Boudjelal M, Taneja R, Matsubara S, Bouillet P, Dolle P, Chambon P (1997) Overexpression of Stra13, a novel retinoicacid-inducible gene of the basic helix-loop-helix family, inhibits mesodermal and promotes neuronal differentiation of P19 cells. Genes Dev 11:2052–2065. doi: 10.1101/gad.11.16.2052 PubMedCrossRefGoogle Scholar
  8. Chen JD, Li H (1998) Coactivation and corepression in transcriptional regulation by steroid/nuclear hormone receptors. Crit Rev Eukaryot Gene Expr 8:169–190PubMedGoogle Scholar
  9. Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054. doi: 10.1101/gad.1077503 PubMedCrossRefGoogle Scholar
  10. Collinge CB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasumussen U, Vad K (1993) Plant chitinases. Plant J 3:31–40. doi: 10.1046/j.1365-313X.1993.t01-1-00999.x PubMedCrossRefGoogle Scholar
  11. Duek PD, Fankhauser C (2005) bHLH class transcription factors take centre stage in phytochrome signalling. Trends Plant Sci 10:51–54. doi: 10.1016/j.tplants.2004.12.005 PubMedCrossRefGoogle Scholar
  12. Falquet L, Pagni M, Bucher P, Hulo N, Sigrist CJ, Hofmann K, Barioch A (2002) The PROSITE database, its status in 2002. Nucleic Acids Res 30:235–238. doi: 10.1093/nar/30.1.235 PubMedCrossRefGoogle Scholar
  13. Hegedus D, Yu M, Baldwin D, Gruber M, Sharpe A, Parkin I, Whiteill S, Lydiate D (2003) Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol Biol 53:383–397. doi: 10.1023/B:PLAN.0000006944.61384.11 PubMedCrossRefGoogle Scholar
  14. Kragh KM, Hendriks T, de Jong AJ, Schiavo FL, Bucherna N, Hojrup P, Mikkelsen JD, de Vries SC (1996) Characterization of chitinases able to rescue somatic embryos of the temperature sensitive carrot variant ts11. Plant Mol Biol 31:631–645. doi: 10.1007/BF00042235 PubMedCrossRefGoogle Scholar
  15. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245. doi: 10.1093/bioinformatics/17.12.1244 PubMedCrossRefGoogle Scholar
  16. Laherty CD, Yang WM, Sun JM, Davie JR, Seto E, Eisenman RN (1997) Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89:349–356. doi: 10.1016/S0092-8674(00)80215-9 PubMedCrossRefGoogle Scholar
  17. Ledent V, Vervoort M (2001) The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. Genome Res 11:754–770. doi: 10.1101/gr.177001 PubMedCrossRefGoogle Scholar
  18. Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P (2004) SMART 4.0: towards genomic data integration. Nucleic Acids Res 32:142–144. doi: 10.1093/nar/gkh088 CrossRefGoogle Scholar
  19. Li HM, Sun JQ, Xu YX, Jiang HL, Wu XY, Li CY (2007) The bHLH-type transcription factor AtAIB positively regulates ABA response in Arabidopsis. Plant Mol Biol 65:655–665. doi: 10.1007/s11103-007-9230-3 PubMedCrossRefGoogle Scholar
  20. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. doi: 10.1006/meth.2001.1262 PubMedCrossRefGoogle Scholar
  21. Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R (2004) JASMONATE- INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate regulated defense responses in Arabidopsis. Plant Cell 16:1938–1950. doi: 10.1105/tpc.022319 PubMedCrossRefGoogle Scholar
  22. Massari ME, Murre C (2000) Helix-loop-helix proteins: regulators of transcription in eukaryotic organisms. Mol Cell Biol 20:429–440. doi: 10.1128/MCB.20.2.429-440.2000 PubMedCrossRefGoogle Scholar
  23. Mouille G, Robin S, Lecomte M, Pagant S, Hofte H (2003) Classification and identification of Arabidopsis cell wall mutants using Fourier-Transform InfraRed (FT-IR) microspectroscopy. Plant J 35:393–404. doi: 10.1046/j.1365-313X.2003.01807.x PubMedCrossRefGoogle Scholar
  24. Schiefelbein J (2003) Cell-fate specification in the epidermis: a common patterning mechanism in the root and shoot. Curr Opin Plant Biol 6:74–78. doi: 10.1016/S136952660200002X PubMedCrossRefGoogle Scholar
  25. Sun H, Taneja R (2000) Stra13 expression is associated with growth arrest and represses transcription through histone deacetylase (HDAC)-dependent and HDAC-independent mechanisms. Proc Natl Acad Sci U S A 97:4058–4063. doi: 10.1073/pnas.070526297 PubMedCrossRefGoogle Scholar
  26. Tahhan TJ, Randy DA (1999) Isolation of a novel cDNA encoding an auxin-induced basic helix-loop-helix transcription factor (accession no. AF165924) from cotton (Gossypium hirsutum L.). Plant Physiol 121:685–10.1104/pp.121.2.685CrossRefGoogle Scholar
  27. Tamai H, Iwabuchi M, Meshi T (2002) Arabidopsis GARP transcriptional activators interact with the Pro-rich activation domain shared by G-box-binding bZIP factors. Plant Cell Physiol 43:99–107. doi: 10.1093/pcp/pcf011 PubMedCrossRefGoogle Scholar
  28. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi: 10.1093/nar/25.24.4876 PubMedCrossRefGoogle Scholar
  29. Toledo-Ortiz G, Huq E, Quail PH (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15:1749–1770. doi: 10.1105/tpc.013839 PubMedCrossRefGoogle Scholar
  30. Tu LL, Zhang XL, Liang SG, Liu DQ, Zhu LF, Zeng FC, Nie YC, Guo XP, Deng FL, Tan JF, Xu L (2007) Genes expression analyses of sea-island cotton (Gossypium barbadense L.) during fiber development. Plant Cell Rep 26:1309–1320. doi: 10.1007/s00299-007-0337-4 PubMedCrossRefGoogle Scholar
  31. Wu Y, Llewellyn DJ, Dennis ES (2002) A quick and easy method for isolating good-quality RNA from cotton (Gossypium hirsutum L.) tissues. Plant Mol Biol Rep 20:213–218. doi: 10.1007/BF02782456 CrossRefGoogle Scholar
  32. Yadav V, Mallappa C, Gangappa SN, Bhatia S, Chattopadhyay S (2005) A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light-mediated photomorphogenic growth. Plant Cell 17:1953–1966. doi: 10.1105/tpc.105.032060 PubMedCrossRefGoogle Scholar
  33. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803. doi: 10.1146/annurev.arplant.57.032905.105444 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research InstituteNanjing Agricultural UniversityNanjingChina

Personalised recommendations