Effects of nitrogen fertilization on the rhizosphere priming

Abstract

Background and aims

It is known that nitrogen (N) input modulates the rhizosphere priming effect (RPE); however, the magnitude and driving mechanisms of priming under increasing rates of fertilizer application remain unclear.

Methods

15N-urea (control, 75 (N75), 150 (N150), 225 (N225), and 300 (N300) kg N ha−1) was applied to a plant (maize)-soil (rice paddy) system and the RPE was monitored during the trumpet period (the most active stage) of plant growth.

Results

Addition of N decreased soil-derived CO2 emission by 21.1–49.3% in the presence of plants. The RPE declined following N input in the control−N150 as a result of low microbial C:N imbalance, which decreased enzyme activities due to low microbial N mining and microbial activation, and high microbial metabolic efficiency (MME). In contrast, the RPE increased following N input in the N150 − N300, which was attributed to the high microbial C:N imbalance causing low MME, rather than the promotion of microbial N mining or microbial activation mechanisms. The microbial C:N imbalance was the result of N competition between microorganisms and plants.

Conclusions

Thus, the combination of enzyme activities and MME mediates N-regulated RPE, while N competition drives the switching of RPE mechanisms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

N:

Nitrogen

C:

Carbon

SOM:

Soil organic matter

RPE:

Rhizosphere priming effect

MME:

Microbial metabolic efficiency

WHC:

Water holding capacity

MBC:

Microbial biomass carbon

MBN:

Microbial biomass nitrogen

DOC:

Dissolved organic carbon

DON:

Dissolved total nitrogen

BG:

β-1,4-glucosidase

NAG:

β-1,4-N–acetylglucosaminidase

LAP:

L-leucine aminopeptidase

PO:

Phenol oxidase

CUE:

Carbon use efficiency

References

  1. Allison SD, Wallenstein MD, Bradford MA (2010) Soil-carbon response to warming dependent on microbial physiology. Nat Geosci 3:336–340. https://doi.org/10.1038/ngeo846

    CAS  Article  Google Scholar 

  2. Averill C, Waring B (2018) Nitrogen limitation of decomposition and decay: how can it occur? Glob Chang Biol 24:1417–1427. https://doi.org/10.1111/gcb.13980

    Article  PubMed  Google Scholar 

  3. Blagodatskaya E, Blagodatsky S, Anderson TH, Kuzyakov Y (2007) Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies. Appl Soil Ecol 37:95–105. https://doi.org/10.1016/j.apsoil.2007.05.002

    Article  Google Scholar 

  4. Bloor JMG, Niboyet A, Leadley PW, Barthes L (2009) CO2 and inorganic N supply modify competition for N between co-occurring grass plants, tree seedlings and soil microorganisms. Soil Biol Biochem 41:544–552. https://doi.org/10.1016/j.soilbio.2008.12.013

    CAS  Article  Google Scholar 

  5. Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234. https://doi.org/10.1016/j.soilbio.2012.11.009

    CAS  Article  Google Scholar 

  6. Carrillo Y, Dijkstra FA, Pendall E, LeCain D, Tucker C (2014) Plant rhizosphere influence on microbial C metabolism: the role of elevated CO2, N availability and root stoichiometry. Biogeochemistry 117:229–240. https://doi.org/10.1007/s10533-014-9954-5

  7. Chen R, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Lin X, Blagodatskaya E, Kuzyakov Y (2014) Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Glob Chang Biol 20:2356–2367. https://doi.org/10.1111/gcb.12475

    Article  PubMed  Google Scholar 

  8. Chen Z, Xu Y, Fan J, Yu H, Ding W (2017) Soil autotrophic and heterotrophic respiration in response to different N fertilization and environmental conditions from a cropland in Northeast China. Soil Biol Biochem 110:103–115. https://doi.org/10.1016/j.soilbio.2017.03.011

    CAS  Article  Google Scholar 

  9. Chen L, Liu L, Mao C, Qin S, Wang J, Liu F, Blagodatsky S, Yang G, Zhang Q, Zhang D, Yu J, Yang Y (2018) Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency. Nat Commun 9:3951. https://doi.org/10.1038/s41467-018-06232-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Cheng WX (1999) Rhizosphere feedbacks in elevated CO2. Tree Physiol 19:313–320. https://doi.org/10.1093/treephys/19.4−5.313

    Article  PubMed  Google Scholar 

  11. Cheng WX, Kuzyakov Y (2005) Root effects on soil organic matter decomposition. In: Zobel RW, Wright SF (eds) Roots and soil management: interactions between roots and the soil. Agronomy monograph no. 48. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 119–143

    Google Scholar 

  12. Cheng WX, Johnson DW, Fu SL (2003) Rhizosphere effects on decomposition: controls of plant species, phenology, and fertilization. Soil Sci Soc Am J 67:1418–1427. https://doi.org/10.2136/sssaj2003.1418

    CAS  Article  Google Scholar 

  13. Cheng W, Parton WJ, Gonzalez-Meler MA, Phillips R, Asao S, McNickle GG, Brzostek E, Jastrow JD (2014) Synthesis and modeling perspectives of rhizosphere priming. New Phytol 201:31–44. https://doi.org/10.1111/nph.12440

    CAS  Article  PubMed  Google Scholar 

  14. Craine JM, Morrow C, Fierer N (2007) Microbial nitrogen limitation increases decomposition. Ecology 88:2105–2113. https://doi.org/10.1890/06-1847.1

    Article  PubMed  Google Scholar 

  15. Cui Z, Zhang H, Chen X, Zhang C, Ma W, Huang C, Zhang W, Mi G, Miao Y, Li X (2018) Pursuing sustainable productivity with millions of smallholder farmers. Nature 555:363–366. https://doi.org/10.1038/nature25785

    CAS  Article  PubMed  Google Scholar 

  16. Dijkstra F, Cheng W, Johnson D (2006) Plant biomass influences rhizosphere priming effects on soil organic matter decomposition in two differently managed soils. Soil Biol Biochem 38:2519–2526. https://doi.org/10.1016/j.soilbio.2006.02.020

    CAS  Article  Google Scholar 

  17. Dijkstra FA, Carrillo Y, Pendall E, Morgan JA (2013) Rhizosphere priming: a nutrient perspective. Front Microbiol 39:600–606. https://doi.org/10.3389/fmicb.2013.00216

    CAS  Article  Google Scholar 

  18. Drake JE, Darby B, Giasson MA, Kramer MA, Phillips RP, Finzi AC (2013) Stoichiometry constrains microbial response to root exudation-insights from a model and a field experiment in a temperate forest. Biogeosciences 10:6899–6945. https://doi.org/10.5194/bg-10-821-2013

  19. FAO, IFAD, UNICEF, WFP, WHO (2017) The state of food security and nutrition in the world 2017. Building Resilience for Peace and Food Security. Food and Agriculture Organization of the United Nations, Rome, p 117

    Google Scholar 

  20. Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6:1007–1017. https://doi.org/10.1038/ismej.2011.159

    CAS  Article  PubMed  Google Scholar 

  21. Fischer H, Kuzyakov Y (2010) Sorption, microbial uptake and decomposition of acetate in soil: transformations revealed by position-specific 14C labeling. Soil Biol Biochem 42:186–192. https://doi.org/10.1016/j.soilbio.2009.10.015

    CAS  Article  Google Scholar 

  22. Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843. https://doi.org/10.1016/S0038-0717(03)00123-8

    CAS  Article  Google Scholar 

  23. Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289–292. https://doi.org/10.1038/nature06591

    CAS  Article  PubMed  Google Scholar 

  24. Hoosbeek MR, Li Y, Scarascia-Mugnozza GE (2006) Free atmospheric CO2 enrichment (FACE) increased labile and total carbon in the mineral soil of a short rotation poplar plantation. Plant Soil 281:247–254. https://doi.org/10.1007/s11104-005-4293-x

    CAS  Article  Google Scholar 

  25. Janssens I, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci 3:315–322. https://doi.org/10.1038/ngeo844

    CAS  Article  Google Scholar 

  26. Joergensen RG (1996) The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEC value. Soil Biol Biochem 28:25–31. https://doi.org/10.1016/0038-0717(95)00102-6

  27. Joergensen RG, Mueller T (1996) The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEN value. Soil Biol Biochem 28:33–37. https://doi.org/10.1016/0038-0717(95)00101-8

    CAS  Article  Google Scholar 

  28. Jones D, Kemmitt S, Wright D, Cuttle S, Bol R, Edwards A (2005) Rapid intrinsic rates of amino acid biodegradation in soils are unaffected by agricultural management strategy. Soil Biol Biochem 37:1267–1275. https://doi.org/10.1016/j.soilbio.2004.11.023

    CAS  Article  Google Scholar 

  29. Kumar A, Kuzyakov Y, Pausch J (2016) Maize rhizosphere priming: field estimates using 13C natural abundance. Plant Soil 409:87–97. https://doi.org/10.1007/s11104-016-2958-2

    CAS  Article  Google Scholar 

  30. Kuzyakov Y (2002) Factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci 165:382–396. https://doi.org/10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-%23

    CAS  Article  Google Scholar 

  31. Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371. https://doi.org/10.1016/j.soilbio.2010.04.003

    CAS  Article  Google Scholar 

  32. Kuzyakov Y, Blagodatskaya E (2015) Microbial hotspots and hot moments in soil: concept & review. Soil Biol Biochem 83:184–199. https://doi.org/10.1016/j.soilbio.2015.01.025

    CAS  Article  Google Scholar 

  33. Kuzyakov Y, Xu XL (2013) Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol 198:656–669. https://doi.org/10.1111/nph.12235

    CAS  Article  PubMed  Google Scholar 

  34. Lal R (2008) Carbon sequestration. Philos Trans R Soc B 363:815–830. https://doi.org/10.1098/rstb.2007.2185

    CAS  Article  Google Scholar 

  35. Li SS, Du YH, Guo P, Guo LD, Qu KY, He JP (2014) Effects of different types of N deposition on the fungal decomposition activities of temperate forest soils. Sci Total Environ 497:91–96. https://doi.org/10.1016/j.scitotenv.2014.07.098

    CAS  Article  PubMed  Google Scholar 

  36. Lu JY, Dijkstra FA, Wang P, Cheng WX (2018) Rhizosphere priming of grassland species under different water and nitrogen conditions: a mechanistic hypothesis of C-N interactions. Plant Soil 429:303–319. https://doi.org/10.1007/s11104-018-3699-1

    CAS  Article  Google Scholar 

  37. Ma Q, Wu L, Wang J, Ma J, Zheng N, Hill PW, Chadwick DR, Jones DL (2018) Fertilizer regime changes the competitive uptake of organic nitrogen by wheat and soil microorganisms: an in-situ uptake test using 13C, 15N labelling, and 13C−PLFA analysis. Soil Biol Biochem 125:319–327. https://doi.org/10.1016/j.soilbio.2018.08.009

    CAS  Article  Google Scholar 

  38. Manzoni S, Porporato A (2009) Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biol Biochem 41:1355–1379. https://doi.org/10.1016/j.soilbio.2009.02.031

    CAS  Article  Google Scholar 

  39. Manzoni S, Jackson RB, Trofymow JA, Porporato A (2008) The global stoichiometry of litter nitrogen mineralization. Science 321:684–686. https://doi.org/10.1126/science.1159792

  40. Manzoni S, Taylor P, Richter A, Porporato A, Ågren GI (2012) Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol 196:79–91. https://doi.org/10.1111/j.1469-8137.2012.04225.x

    CAS  Article  PubMed  Google Scholar 

  41. Marx MC, Wood M, Jarvis SC (2001) A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol Biochem 33:1633–1640. https://doi.org/10.1016/S0038-0717(01)00079-7

    CAS  Article  Google Scholar 

  42. Meier IC, Finzi AC, Phillips RP (2017) Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools. Soil Biol Biochem 106:119–128. https://doi.org/10.1016/j.soilbio.2016.12.004

    CAS  Article  Google Scholar 

  43. Moorhead DL, Lashermes G, Sinsabaugh RL (2012) A theoretical model of C-and N-acquiring exoenzyme activities, which balances microbial demands during decomposition. Soil Biol Biochem 53:133–141. https://doi.org/10.1016/j.soilbio.2016.12.004

    CAS  Article  Google Scholar 

  44. Mooshammer M, Wanek W, Hämmerle I, Fuchslueger L, Hofhansl F, Knoltsch A, Schnecker J, Takriti M, Watzka M, Wild B (2014) Adjustment of microbial nitrogen use efficiency to carbon: nitrogen imbalances regulates soil nitrogen cycling. Nat Commun 5:3694. https://doi.org/10.1038/ncomms4694

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  46. Riggs CE, Hobbie SE (2016) Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils. Soil Biol Biochem 99:54–65. https://doi.org/10.1016/j.soilbio.2016.04.023

    CAS  Article  Google Scholar 

  47. Rosswall T (1982) Microbiological regulation of the biogeochemical nitrogen cycle. Plant Soil 67:15–34. https://doi.org/10.1007/BF02182752

    CAS  Article  Google Scholar 

  48. Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602. https://doi.org/10.1890/03-8002

    Article  Google Scholar 

  49. Schimel JP, Weintraub MN (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35:549–563. https://doi.org/10.1016/S0038-0717(03)00015-4

    CAS  Article  Google Scholar 

  50. Sinsabaugh RL, Manzoni S, Moorhead DL, Richter A (2013) Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol Lett 16:930–939. https://doi.org/10.1111/ele.12113

    Article  PubMed  Google Scholar 

  51. Sinsabaugh RL, Turner BL, Talbot JM, Waring BG, Powers JS, Kuske CR, Moorhead DL, Follstad Shah JJ (2016) Stoichiometry of microbial carbon use efficiency in soils. Ecol Monogr 86:172–189. https://doi.org/10.1890/15-2110.1

    Article  Google Scholar 

  52. Six J, Frey S, Thiet R, Batten K (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569. https://doi.org/10.2136/sssaj2004.0347

    CAS  Article  Google Scholar 

  53. Sparling G, Cheshire M, Mundie C (1982) Effect of barley plants on the decomposition of 14C-labelled soil organic matter. J Soil Sci 33:89–100. https://doi.org/10.1111/j.1365-2389.1982.tb01750.x

    Article  Google Scholar 

  54. Sullivan BW, Hart SC (2013) Evaluation of mechanisms controlling the priming of soil carbon along a substrate age gradient. Soil Biol Biochem 58:293–301. https://doi.org/10.1016/j.soilbio.2012.12.007

    CAS  Article  Google Scholar 

  55. Svoboda N, Taube F, Wienforth B, Kluß C, Kage H, Herrmann A (2013) Nitrogen leaching losses after biogas residue application to maize. Soil Tillage Res 130:69–80. https://doi.org/10.1016/j.still.2013.02.006

    Article  Google Scholar 

  56. Tian P, Mason-Jones K, Liu S, Wang Q, Sun T (2019) Form of nitrogen deposition affects soil organic matter priming by glucose and cellulose. Biol Fertil Soils 55:383–391. https://doi.org/10.1007/s00374-019-01357-8

    CAS  Article  Google Scholar 

  57. Tinker PB, Nye P (2000) Solute movement in the rhizosphere. Oxford University Press, Oxford, p 444

    Google Scholar 

  58. Van Veen JA, Merckx R, Van De Geijn SC (1989) Plant-and soil-related controls of the flow of carbon from roots through the soil microbial biomass. In: Clarholm M, Bergström L (eds) Developments in plant and soil sciences. Springer, Dordrecht, pp 43–52

  59. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707. https://doi.org/10.1016/0038-0717(87)90052-6

    CAS  Article  Google Scholar 

  60. Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115. https://doi.org/10.2307/1468901

    Article  Google Scholar 

  61. Xu Q, Wang X, Tang C (2018) The effects of elevated CO2 and nitrogen availability on rhizosphere priming of soil organic matter under wheat and white lupin. Plant Soil 425:375–387. https://doi.org/10.1007/s11104-018-3601-1

    CAS  Article  Google Scholar 

  62. Zang H, Wang J, Kuzyakov Y (2016) N fertilization decreases soil organic matter decomposition in the rhizosphere. Appl Soil Ecol 108:47–53. https://doi.org/10.1016/j.apsoil.2016.07.021

    Article  Google Scholar 

  63. Zheng J, Qu Y, Kilasara MM, Mmari WN, Funakawa S (2019) Nitrate leaching from the critical root zone of maize in two tropical highlands of Tanzania: effects of fertilizer-nitrogen rate and straw incorporation. Soil Tillage Res 194:104295. https://doi.org/10.1016/j.still.2019.104295

    Article  Google Scholar 

  64. Zhu B, Gutknecht JLM, Herman DJ, Keck DC, Firestone MK, Cheng W (2014) Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biol Biochem 76:183–192. https://doi.org/10.1016/j.soilbio.2014.04.033

    CAS  Article  Google Scholar 

  65. Zhu Z, Ge T, Liu S, Hu Y, Ye R, Xiao M, Tong C, Kuzyakov Y, Wu J (2018) Rice rhizodeposits affect organic matter priming in paddy soil: the role of N fertilization and plant growth for enzyme activities, CO2 and CH4 emissions. Soil Biol Biochem 116:369–377. https://doi.org/10.1016/j.soilbio.2017.11.001

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Key Research and Development Program of China (No. 2016YFD0300203-4) and the National Natural Science Foundation of China (No. 31870419). Z.J. and J.Y. planned and designed the research. Z.J., Y.L. and Z.Z. performed experiments and analyzed data. Z.J., J.Y. and G.A. wrote the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jingping Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Tim S. George.

Supplementary Information

ESM 1

(DOCX 859 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Liu, Y., Yang, J. et al. Effects of nitrogen fertilization on the rhizosphere priming. Plant Soil (2021). https://doi.org/10.1007/s11104-021-04872-6

Download citation

Keywords

  • Plant−soil system
  • Soil organic carbon mineralization
  • Microbial carbon−nitrogen demand
  • Plant−microorganism nitrogen competition
  • Soil enzyme