Microplastics in soil-plant system: effects of nano/microplastics on plant photosynthesis, rhizosphere microbes and soil properties in soil with different residues

Abstract

Aims

To investigate the effects of polystyrene microplastics (PS-beads) on the soil properties, photosynthesis of Flowering Chinese cabbage, the rhizosphere microbial community and their potential correlation in soil with different residues.

Methods

The influences of PS-beads (PS-MPs, M1, 5 μm; PS-NPs, M2, 70 nm) on the plant photosynthesis and growth parameters, soil dissolved organic matter (DOM) and the characteristic functional groups, the microbial community and metabolism prediction were studied by a pot-experiment in soil without residues (N), with biochar (B), degradable mulching film (DMF) fragments (D), or biochar and DMF (BD).

Key results

Chlorophyll a was more susceptible to the exogenous substances than Chlorophyll b. In soil with different residues, PS-beads of different sizes could change different components, structures and functional groups in aromatic rings of DOM, might further change the microbial community and metabolism. M2 decreased TDN and NO3 and increased the weight of the plant in group D. M2 increased the weight of the plant in group N. M2 decreased the net photosynthetic rate in group B. The different sizes of PS-beads affected the different parameters of plant growth and potentially changed the plant growth and photosynthetic parameters through altering the microbial metabolism and the correlation among microbes. The potential mechanisms of PS-beads changing the plant growth were different in soil with different residues.

Conclusions

Our results evidenced the PS-beads potentially changed the plant growth and photosynthesis by changing the microbial metabolism and the correlation among microbes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Arthur, C., Baker, J., Bamford, H., 2008. In: proceedings of theInternational research workshop on the occurrence, effects, and fate of microplastic marine debris., NOAA technical memorandum

  2. Bandopadhyay S, Martin-Closas L, Pelacho AM, DeBruyn JM (2018) Biodegradable plastic mulch films: impacts on soil microbial communities and ecosystem functions. Front Microbiol 9:819. https://doi.org/10.3389/fmicb.2018.00819

    Article  PubMed  PubMed Central  Google Scholar 

  3. Barnes DKA, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B: Biological Sciences 364:1985–1998. https://doi.org/10.1098/rstb.2008.0205

    CAS  Article  Google Scholar 

  4. Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486. https://doi.org/10.1016/j.tplants.2012.04.001

    CAS  Article  Google Scholar 

  5. Boots B, Russell CW, Green DS (2019) Effects of microplastics in soil ecosystems: above and below ground. Environ. Sci. Technol. 53:11496–11506. https://doi.org/10.1021/acs.est.9b03304

    CAS  Article  PubMed  Google Scholar 

  6. Brodhagen M, Peyron M, Miles C, Inglis D (2014) Biodegradable plastic agricultural mulches and key features of microbial degradation. Biodegradable plastic agricultural mulches and key features of microbial degradation Applied Microbiology and Biotechnology 99:99–1056. https://doi.org/10.1007/s00253-014-6267-5

    CAS  Article  Google Scholar 

  7. Chae Y, An Y-J (2018) Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review. Environ Pollut 240:387–395. https://doi.org/10.1016/j.envpol.2018.05.008

    CAS  Article  PubMed  Google Scholar 

  8. Chao A (1984) Nonparametric estimation of the number of classes in a population. Candinavian journal of. Statistics 11:265–270

    Google Scholar 

  9. Chao A, Yang MCK (1993) Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika 80:193–201. https://doi.org/10.1093/biomet/80.1.193

    Article  Google Scholar 

  10. Chek MF, Kim S-Y, Mori T, Arsad H, Samian MR, Sudesh K, Hakoshima T (2017) Structure of polyhydroxyalkanoate (PHA) synthase PhaC from Chromobacterium sp. USM2, producing biodegradable plastics. Scientific reports 7. https://doi.org/10.1038/s41598-017-05509-4

  11. Claessens M, Meester SD, Landuyt LV, Clerck KD, Janssen CR (2011) Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Mar Pollut Bull 62:2199–2204. https://doi.org/10.1016/j.marpolbul.2011.06.030

    CAS  Article  PubMed  Google Scholar 

  12. Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62:2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025

    CAS  Article  PubMed  Google Scholar 

  13. Corradini F, Meza P, Eguiluz R, Casado F, Huerta-Lwanga E, Geissen V (2019) Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Sci Total Environ 671:411–420. https://doi.org/10.1016/j.scitotenv.2019.03.368

    CAS  Article  PubMed  Google Scholar 

  14. de Souza Machado AA, Lau CW, Kloas W, Bergmann J, Bachelier JB, Faltin E, Becker R, Görlich AS, Rillig MC (2019) Microplastics can change soil properties and affect plant performance. Environ Sci Technol 53:6044–6052. https://doi.org/10.1021/acs.est.9b01339

    CAS  Article  PubMed  Google Scholar 

  15. Dong Y, Gao M, Song Z, Qiu W (2020) Microplastic particles increase arsenic toxicity to rice seedlings. Environ Pollut 259:113892. https://doi.org/10.1016/j.envpol.2019.113892

    CAS  Article  PubMed  Google Scholar 

  16. Esteban R, Barrutia O, Artetxe U, Fernández-Marín B, Hernández A, García-Plazaola JI (2015) Internal and external factors affecting photosynthetic pigment composition in plants: a meta-analytical approach. New Phytol 206:268–280. https://doi.org/10.1111/nph.13186

    CAS  Article  PubMed  Google Scholar 

  17. Gao, M., Liu, Y., Song, Z., 2019. Effects of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in lettuce (Lactuca sativa L. var. ramosa Hort). Chemosphere 237, 124482. https://doi.org/10.1016/j.chemosphere.2019.124482

  18. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782. https://doi.org/10.1126/sciadv.1700782

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Gündoğdu S, Çevik C, Güzel E, Kilercioğlu S (2018) Microplastics in municipal wastewater treatment plants in Turkey: a comparison of the influent and secondary effluent concentrations. Environ Monit Assess 190:626. https://doi.org/10.1007/s10661-018-7010-y

    Article  PubMed  Google Scholar 

  20. He P, Chen L, Shao L, Zhang H, Lü F (2019) Municipal solid waste (MSW) landfill: a source of microplastics? -evidence of microplastics in landfill leachate. Water Res 159:38–45. https://doi.org/10.1016/j.watres.2019.04.060

    CAS  Article  PubMed  Google Scholar 

  21. He Y, Cheng W, Zhou L, Shao J, Liu H, Zhou H, Zhu K, Zhou X (2020) Soil DOC release and aggregate disruption mediate rhizosphere priming effect on soil C decomposition. Soil Biol Biochem 144:107787. https://doi.org/10.1016/j.soilbio.2020.107787

    CAS  Article  Google Scholar 

  22. Huang Y, Zhao Y, Wang J, Zhang M, Jia W, Qin X (2019) LDPE microplastic films alter microbial community composition and enzymatic activities in soil. Environ Pollut 254:112983. https://doi.org/10.1016/j.envpol.2019.112983

    CAS  Article  PubMed  Google Scholar 

  23. Jaffrain J, Gérard F, Meyer M, Ranger J (2007) Assessing the quality of dissolved organic matter in Forest soils using ultraviolet absorption spectrophotometry. Soil Sci Soc Am J 71:1851–1858. https://doi.org/10.2136/sssaj2006.0202

    CAS  Article  Google Scholar 

  24. Jassby D, Su Y, Kim C, Ashworth V, Adeleye A, Rolshausen P, Roper C, White J (2019) Delivery, uptake, fate, and transport of engineered nanoparticles in plants: a critical review and data analysis. Environmental Science: Nano 6:2311–2331. https://doi.org/10.1039/C9EN00461K

    Article  Google Scholar 

  25. Jiang X, Chen H, Liao Y, Ye Z, Li M, Klobučar G (2019) Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environ Pollut 250:831–838. https://doi.org/10.1016/j.envpol.2019.04.055

    CAS  Article  PubMed  Google Scholar 

  26. Kleunen, M., Brumer, A., Gutbrod, L., Zhang, Z., 2019. A microplastic used as infill material in artificial sport turfs reduces plant growth. Plants People Planet ppp3.10071. https://doi.org/10.1002/ppp3.10071

  27. Koelmans AA, Bakir A, Burton GA, Janssen CR (2016) Microplastic as a vector for Chemicals in the Aquatic Environment: critical review and model-supported reinterpretation of empirical studies. Environmental Science & Technology 50:3315–3326. https://doi.org/10.1021/acs.est.5b06069

    CAS  Article  Google Scholar 

  28. Law KL, Thompson RC (2014) Microplastics in the seas. Science 345:144–145. https://doi.org/10.1126/science.1256304

    CAS  Article  PubMed  Google Scholar 

  29. Li J, Zhang K, Zhang H (2018) Adsorption of antibiotics on microplastics. Environ Pollut 237:460–467. https://doi.org/10.1016/j.envpol.2018.02.050

    CAS  Article  PubMed  Google Scholar 

  30. Li L, Luo Y, Li R, Zhou Q, Peijnenburg WJGM, Yin N, Yang J, Tu C, Zhang Y (2020) Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nature sustainability 11

  31. Li L, Zhou Q, Yin N, Tu C, Luo Y (2019) Uptake and accumulation of microplastics in an edible plant. Science Bulletin 64:928–934

    Google Scholar 

  32. Lian J, Wu J, Xiong H, Zeb A, Yang T, Su X, Su L, Liu W (2020) Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.). journal of hazardous materials 385, 121620. https://doi.org/10.1016/j.jhazmat.2019.121620

  33. Liao Y, Nazygul J, Li M, Wang X, Jiang L (2019) Effects of microplastics on the growth, physiology, and biochemical characteristics of wheat (Triticum aestivum). Environmental Science 40:4661–4667

    Google Scholar 

  34. Liu F, Liu G, Zhu Z, Wang S, Zhao F (2019) Interactions between microplastics and phthalate esters as affected by microplastics characteristics and solution chemistry. Chemosphere 214:688–694. https://doi.org/10.1016/j.chemosphere.2018.09.174

    CAS  Article  PubMed  Google Scholar 

  35. Mahon AM, O’Connell B, Healy MG, O’Connor I, Officer R, Nash R, Morrison L (2017) Microplastics in sewage sludge: effects of treatment. Environmental Science & Technology 51:810–818. https://doi.org/10.1021/acs.est.6b04048

    CAS  Article  Google Scholar 

  36. Mueller UG, Sachs JL (2015) Engineering microbiomes to improve plant and animal health. Trends Microbiol 23:606–617. https://doi.org/10.1016/j.tim.2015.07.009

    CAS  Article  PubMed  Google Scholar 

  37. Neis E, Dejong C, Rensen S (2015) The role of microbial amino acid metabolism in host metabolism. Nutrients 7:2930–2946. https://doi.org/10.3390/nu7042930

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Ngo PL, Pramanik BK, Shah K, Roychand R (2019) Pathway, classification and removal efficiency of microplastics in wastewater treatment plants. Environ Pollut 255:113326. https://doi.org/10.1016/j.envpol.2019.113326

    CAS  Article  PubMed  Google Scholar 

  39. Nizzetto L, Futter M, Langaas S (2016) Are agricultural soils dumps for microplastics of urban origin? Environmental Science & Technology 50:10777–10779. https://doi.org/10.1021/acs.est.6b04140

    CAS  Article  Google Scholar 

  40. PlasticsEurope, 2019. Plastics - the facts 2019., n.d.

  41. Qi Y, Ossowicki A, Yang X, Huerta Lwanga E, Dini-Andreote F, Geissen V, Garbeva P (2020) Effects of plastic mulch film residues on wheat rhizosphere and soil properties. J Hazard Mater 387:121711. https://doi.org/10.1016/j.jhazmat.2019.121711

    CAS  Article  PubMed  Google Scholar 

  42. Qi Y, Yang X, Pelaez AM, Huerta Lwanga E, Beriot N, Gertsen H, Garbeva P, Geissen V (2018) Macro- and micro- plastics in soil-plant system: effects of plastic mulch film residues on wheat ( Triticum aestivum ) growth. Sci Total Environ 645:1048–1056. https://doi.org/10.1016/j.scitotenv.2018.07.229

    CAS  Article  PubMed  Google Scholar 

  43. R Core Team, 2019. R: A Language and Environment for Statistical Computing

  44. Ren H, Luo F, Xu Y, Xu R (2012) Comparison on methods of chlorophyll extraction in flowering Chinese cabbage. Journal of Anhui Agriculture Science 40(3):1455–1456

    CAS  Google Scholar 

  45. Ren X, Tang J, Liu X, Liu Q (2020) Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil. Environ Pollut 256:113347. https://doi.org/10.1016/j.envpol.2019.113347

    CAS  Article  PubMed  Google Scholar 

  46. Rillig MC (2012) Microplastic in terrestrial ecosystems and the soil? Environmental Science & Technology 46:6453–6454. https://doi.org/10.1021/es302011r

    CAS  Article  Google Scholar 

  47. RStudio Team, 2018. RStudio: integrated development for R

    Google Scholar 

  48. Sander M (2019) Biodegradation of polymeric mulch films in agricultural soils: concepts, knowledge gaps, and future research directions. Environ. Sci. Technol. 53:2304–2315. https://doi.org/10.1021/acs.est.8b05208

    CAS  Article  PubMed  Google Scholar 

  49. Scheurer M, Bigalke M (2018) Microplastics in Swiss floodplain soils. Environ. Sci. Technol. 52:3591–3598. https://doi.org/10.1021/acs.est.7b06003

    CAS  Article  PubMed  Google Scholar 

  50. Shannon CE (1948) A mathematical theory of communication.Pdf. Bell Syst Tech J 27(379–423):623–656

    Article  Google Scholar 

  51. Shen M, Huang W, Chen M, Song B, Zeng G, Zhang Y (2020) (micro)plastic crisis: un-ignorable contribution to global greenhouse gas emissions and climate change. Journal of cleaner production 254, 120138. https://doi.org/10.1016/j.jclepro.2020.120138

  52. Steinmetz Z, Wollmann C, Schaefer M, Buchmann C, David J, Tröger J, Muñoz K, Frör O, Schaumann GE (2016) Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci Total Environ 550:690–705. https://doi.org/10.1016/j.scitotenv.2016.01.153

    CAS  Article  PubMed  Google Scholar 

  53. Thompson RC (2004) Lost at sea: where is all the plastic? Science 304:838–838. https://doi.org/10.1126/science.1094559

    CAS  Article  PubMed  Google Scholar 

  54. Uzoh IM, Babalola OO (2018) Rhizosphere biodiversity as a premise for application in bio-economy. Agric Ecosyst Environ 265:524–534. https://doi.org/10.1016/j.agee.2018.07.003

    Article  Google Scholar 

  55. Weithmann N, Möller JN, Löder MGJ, Piehl S, Laforsch C, Freitag R (2018) Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv 4:eaap8060. https://doi.org/10.1126/sciadv.aap8060

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Wright SL, Kelly FJ (2017) Plastic and human health: a micro issue? Environ. Sci. Technol. 51:6634–6647. https://doi.org/10.1021/acs.est.7b00423

    CAS  Article  PubMed  Google Scholar 

  57. Wu W-M, Yang J, Criddle CS (2017) Microplastics pollution and reduction strategies. Front Environ Sci Eng 11:6. https://doi.org/10.1007/s11783-017-0897-7

    CAS  Article  Google Scholar 

  58. Yang, P., Zhai, Y.P., Zhao, X., Wang, S., Liu, H., Zhang, X., 2020. Effect of interaction between arbuscular mycorrhizal fungi and rhizobium on Medicago sativa rhizosphere soil bacterial community structure and PICRUSt functional prediction. Microbiology China

    Google Scholar 

  59. Yi Q, Liang B, Nan Q, Wang H, Zhang W, Wu W (2020) Temporal physicochemical changes and transformation of biochar in a rice paddy: insights from a 9-year field experiment. Sci Total Environ 721:137670. https://doi.org/10.1016/j.scitotenv.2020.137670

    CAS  Article  PubMed  Google Scholar 

  60. Zhang R, Vivanco JM, Shen Q (2017) The unseen rhizosphere root–soil–microbe interactions for crop production. Curr Opin Microbiol 37:8–14. https://doi.org/10.1016/j.mib.2017.03.008

    Article  PubMed  Google Scholar 

  61. Zubris KAV, Richards BK (2005) Synthetic fibers as an indicator of land application of sludge. Environ Pollut 138:201–211. https://doi.org/10.1016/j.envpol.2005.04.013

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. U1806216, 41877372), the National Key R&D Program of China [2018YFC1802002], and the 111 program, Ministry of Education, China (No. T2017002).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jingchun Tang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Hans Lambers

Supplementary Information

ESM 1

(DOCX 5.49 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Tang, J., Wang, L. et al. Microplastics in soil-plant system: effects of nano/microplastics on plant photosynthesis, rhizosphere microbes and soil properties in soil with different residues. Plant Soil (2021). https://doi.org/10.1007/s11104-021-04869-1

Download citation

Keywords

  • Degradable mulching film fragments
  • Biochar
  • Microplastics
  • Photosynthesis
  • Rhizosphere microbes
  • PICRUSt 2