Biological soil crusts structure the subsurface microbiome in a sandy agroecosystem

Abstract

Purpose

Biological soil crusts (biocrusts) are commonly found in semi-arid ecosystems and complete biological nitrogen (N) fixation, build soil carbon (C) stocks, and increase soil moisture. Biocrusts were recently identified in Florida agroecosystems, and based on traits of semi-arid biocrusts, could contribute to crop growth and soil health. This study determined the influence of biocrusts in a Florida citrus orchard on microbial diversity and composition of surface and crop root zone soil as related to soil C, N, and moisture.

Methods

Soil samples were collected from areas with biocrust and proximate bare soil (control) in a Florida, USA, citrus orchard. Cores were divided into three soil depths, and soil bacterial and fungal communities were characterized using the 16S rRNA gene and ITS region sequences, respectively.

Results

Biocrust presence and sampling depth significantly impacted microbial community composition. Cyanobacteria and heterotrophic diazotrophs had low relative abundances compared to copiotrophic bacteria in the biocrust soil. Soil below biocrusts had increased moisture, nutrient concentrations, and relative abundances of nitrifying bacteria compared to the root zone below bare soil. Copiotrophic bacteria were enriched under biocrusts, indicating potential for nutrient competition between roots and microorganisms. Biocrust subsoil had elevated relative abundances of Ascomycota and Basidiomycota which contributed to higher fungal community richness and evenness in the rooting zone.

Conclusions

Biocrust subsoil had increased relative abundances of microbiota compared to bare soil without biocrusts, potentially influencing nutrient cycling, crop nutrient uptake and growth, and soil health.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Aanderud ZT, Smart TB, Wu N, Taylor AS, Zhang Y, Belnap J (2018) Fungal loop transfer of nitrogen depends on biocrust constituents and nitrogen form. Biogeosciences 15:3831–3840. https://doi.org/10.5194/bg-15-3831-2018

    CAS  Article  Google Scholar 

  2. Abed RMM, Al-Sadi AM, Al-Shehi M, Al-Hinai S, Robinson MD (2013) Diversity of free-living and lichenized fungal communities in biological soil crusts of the Sultanate of Oman and their role in improving soil properties. Soil Biol Biochem 57:695–705. https://doi.org/10.1016/J.SOILBIO.2012.07.023

    CAS  Article  Google Scholar 

  3. Abed RMM, Tamm A, Hassenrück C, Al-Rawahi AN, Rodríguez-Caballero E, Fiedler S, Maier S, Weber B (2019) Habitat-dependent composition of bacterial and fungal communities in biological soil crusts from Oman. Sci Rep 9:6468. https://doi.org/10.1038/s41598-019-42911-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Ai C, Liang G, Sun J, Wang X, He P, Zhou W, He X (2015) Reduced dependence of rhizosphere microbiome on plant-derived carbon in 32-year long-term inorganic and organic fertilized soils. Soil Biol Biochem 80:70–78. https://doi.org/10.1016/j.soilbio.2014.09.028

    CAS  Article  Google Scholar 

  5. Alva AK, Syvertsen JP (1991) Irrigation water salinity affects soil nutrient distribution, root density, and leaf nutrient levels of citrus under drip fertigation. J Plant Nutr 14:715–727. https://doi.org/10.1080/01904169109364237

    CAS  Article  Google Scholar 

  6. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x

    Article  Google Scholar 

  7. Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253. https://doi.org/10.1111/j.1541-0420.2005.00440.x

    Article  PubMed  Google Scholar 

  8. Banerjee S, Schlaeppi K, van der Heijden MGA (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16:567–576. https://doi.org/10.1038/s41579-018-0024-1

    CAS  Article  PubMed  Google Scholar 

  9. Barger NN, Weber B, Garcia-Pichel F, Zaady E, Belnap J (2016) Patterns and controls on nitrogen cycling of biological soil crusts. In: Weber B, Budel B, Belnap J (eds) Biological soil crusts: An organizing principle in drylands. Springer, Cham, pp 257–285. https://doi.org/10.1007/978-3-319-30214-0_14

  10. Bastida F, Torres IF, Hernández T, García C (2017) The impacts of organic amendments: Do they confer stability against drought on the soil microbial community? Soil Biol Biochem 113:173–183. https://doi.org/10.1016/J.SOILBIO.2017.06.012

    CAS  Article  Google Scholar 

  11. Bates ST, Nash TH, Garcia-Pichel F (2012) Patterns of diversity for fungal assemblages of biological soil crusts from the southwestern United States. Mycologia 104:353–361. https://doi.org/10.3852/11-232

    CAS  Article  PubMed  Google Scholar 

  12. Becerra-Absalón I, Muñoz-Martín M, Montejano G, Mateo P (2019) Differences in the cyanobacterial community composition of biocrusts from the drylands of Central Mexico. Are there endemic species? Front Microbiol 10:937. https://doi.org/10.3389/fmicb.2019.00937

    Article  PubMed  PubMed Central  Google Scholar 

  13. Beeckman F, Motte H, Beeckman T (2018) Nitrification in agricultural soils: impact, actors and mitigation. Curr Opin Biotechnol 50:166–173. https://doi.org/10.1016/j.copbio.2018.01.014

    CAS  Article  PubMed  Google Scholar 

  14. Belnap J (2003) The world at your feet: desert biological soil crusts. Front Ecol Environ 1:181–189. https://doi.org/10.1890/1540-9295(2003)001[0181:TWAYFD]2.0.CO;2

    Article  Google Scholar 

  15. Belnap J, Gillette DA (1998) Vulnerability of desert biological soil crusts to wind erosion: the influences of crust development, soil texture, and disturbance. J Arid Environ 39:133–142. https://doi.org/10.1006/jare.1998.0388

  16. Belnap J, Weber B, Büdel B (2016) Biological soil crusts as an organizing principle in drylands. In: Weber B, Bundel B, Belnap J (dds) Biological soil crusts: An organizing principle in drylands. Springer, Berlin, pp 3–13. https://doi.org/10.1007/978-3-319-30214-0_1

  17. Beraldi-Campesi H, Hartnett HE, Anbar A, Gordon GW, Garcia-Pichel F (2009) Effect of biological soil crusts on soil elemental concentrations: implications for biogeochemistry and as traceable biosignatures of ancient life on land. Geobiology 7:348–359. https://doi.org/10.1111/j.1472-4669.2009.00204.x

    CAS  Article  PubMed  Google Scholar 

  18. Blay ES, Schwabedissen SG, Magnuson TS, Aho KA, Sheridan PP, Lohse KA (2017) Variation in biological soil crust bacterial abundance and diversity as a function of climate in cold steppe ecosystems in the Intermountain West, USA. Microb Ecol 74:691–700. https://doi.org/10.1007/s00248-017-0981-3

    Article  PubMed  Google Scholar 

  19. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory Caporaso J (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:90. https://doi.org/10.1186/s40168-018-0470-z

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet C, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, … Caporaso JG (2019) Reproducible, interactive, scalable, and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Bompadre MJ, Rios De Molina MC, Colombo RP, Fernandez Bidondo L, Silvani VA, Pardo AG, Ocampo JA, Godeas AM (2013) Differential efficiency of two strains of the arbuscular mycorrhizal fungus Rhizophagus irregularis on olive (Olea europaea) plants under two water regimes. Symbiosis 61:105–112. https://doi.org/10.1007/s13199-013-0260-0

    Article  Google Scholar 

  22. Bowker MA, Belnap J, Büdel B, Sannier C, Pietrasiak N, Eldridge DJ, Rivera-Aguilar V (2016) Controls on distribution patterns of biological soil crusts at micro- to global scales. In: Weber B, Bundel B, Belnap J (eds) Biological soil crusts: An organizing principle in drylands. Springer, Berlin, pp 173–197. https://doi.org/10.1007/978-3-319-30214-0_10

  23. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Callahan BJ, McMurdie PJ, Holmes SP (2017) Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11:2639–2643. https://doi.org/10.1038/ismej.2017.119

    Article  PubMed  PubMed Central  Google Scholar 

  25. Campbell AG, Schwientek P, Vishnivetskaya T, Woyke T, Levy S, Beall CJ, Griffen A, Leys E, Podar M (2014) Diversity and genomic insights into the uncultured Chloroflexi from the human microbiota. Environ Microbiol 16:2635–2643. https://doi.org/10.1111/1462-2920.12461

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 108:4516–4522. https://doi.org/10.1073/pnas.1000080107

    Article  PubMed  Google Scholar 

  27. Castle WS (1980) Citrus root systems: Their structure, function, growth, and relationship of tree performance. Int Soc Citric 1:62–69

    Google Scholar 

  28. Cederlund H, Wessén E, Enwall K, Jones CM, Juhanson J, Pell M, Philippot L, Hallin S (2014) Soil carbon quality and nitrogen fertilization structure bacterial communities with predictable responses of major bacterial phyla. Appl Soil Ecol 84:62–68. https://doi.org/10.1016/j.apsoil.2014.06.003

    Article  Google Scholar 

  29. Chamizo S, Belnap J, Eldridge DJ, Cantón Y, Malam Issa O (2016) The role of biocrusts in arid land hydrology. In: Weber B, Bundel B, Belnap J (eds) Biological soil crusts: An organizing principle in drylands. Springer, Berlin, pp 321–346. https://doi.org/10.1007/978-3-319-30214-0_17

  30. Chávez-Romero Y, Navarro-Noya YE, Reynoso-Martínez SC, Sarria-Guzmán Y, Govaerts B, Verhulst N, Dendooven L, Luna-Guido M (2016) 16S metagenomics reveals changes in the soil bacterial community driven by soil organic C, N-fertilizer and tillage-crop residue management. Soil Tillage Res 159:1–8. https://doi.org/10.1016/j.still.2016.01.007

    Article  Google Scholar 

  31. Clocchiatti A, Hannula SE, van den Berg M, Korthals G, de Boer W (2020) The hidden potential of saprotrophic fungi in arable soil: Patterns of short-term stimulation by organic amendments. Appl Soil Ecol 147:103434. https://doi.org/10.1016/j.apsoil.2019.103434

    Article  Google Scholar 

  32. Colica G, Li H, Rossi F, Li D, Liu Y, De Philippis R (2014) Microbial secreted exopolysaccharides affect the hydrological behavior of induced biological soil crusts in desert sandy soils. Soil Biol Biochem 68:62–70. https://doi.org/10.1016/j.soilbio.2013.09.017

    CAS  Article  Google Scholar 

  33. Cookson WR, Müller C, O’Brien PA, Murphy DV, Grierson PF (2006) Nitrogen dynamics in an australian semiarid grassland soil. Ecology 87:2047–2057. https://doi.org/10.1890/0012-9658(2006)87[2047:NDIAAS]2.0.CO;2

    CAS  Article  PubMed  Google Scholar 

  34. Couradeau E, Giraldo-Silva A, De Martini F, Garcia-Pichel F (2019) Spatial segregation of the biological soil crust microbiome around its foundational cyanobacterium, Microcoleus vaginatus, and the formation of a nitrogen-fixing cyanosphere. Microbiome 7:55. https://doi.org/10.1186/s40168-019-0661-2

    Article  PubMed  PubMed Central  Google Scholar 

  35. Coyne KJ, Parker AE, Lee CK, Sohm JA, Kalmbach A, Gunderson T, Lé On-Zayas R, Capone DG, Carpenter EJ, Cary SC (2020) The distribution and relative ecological roles of autotrophic and heterotrophic diazotrophs in the McMurdo Dry Valleys, Antarctica. FEMS Microbiol Ecol 96:fiaa010. https://doi.org/10.1093/femsec/fiaa010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard RH, von Bergen M, Rattei T, Bendinger B, Nielsen PH, Wagner M (2015) Complete nitrification by Nitrospira bacteria. Nature 528:504–509. https://doi.org/10.1038/nature16461

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Dawkins K, Esiobu N (2017) Arbuscular and ectomycorrhizal fungi associated with the invasive brazilian pepper tree (Schinus terebinthifolius) and two native plants in South Florida. Front Microbiol 8:665. https://doi.org/10.3389/fmicb.2017.00665

    Article  PubMed  PubMed Central  Google Scholar 

  38. de Vries FT, Bardgett RD (2012) Plant–microbial linkages and ecosystem nitrogen retention: lessons for sustainable agriculture. Front Ecol Environ 10:425–432. https://doi.org/10.1890/110162

    Article  Google Scholar 

  39. Dettweiler-Robinson E, Sinsabaugh RL, Rudgers JA (2019) Fungal connections between plants and biocrusts facilitate plants but have little effect on biocrusts. J Ecol. https://doi.org/10.1111/1365-2745.13310

  40. Dias T, Crous CJ, Ochoa-Hueso R, Manrique E, Martins-Loução MA, Cruz C (2020) Nitrogen inputs may improve soil biocrusts multifunctionality in dryland ecosystems. Soil Biol Biochem 149:107947. https://doi.org/10.1016/j.soilbio.2020.107947

    CAS  Article  Google Scholar 

  41. Dickie IA, Martínez-García LB, Koele N, Grelet GA, Tylianakis JM, Peltzer DA, Richardson SJ (2013) Mycorrhizas and mycorrhizal fungal communities throughout ecosystem development. Plant Soil 367:11–39. https://doi.org/10.1007/s11104-013-1609-0

    CAS  Article  Google Scholar 

  42. Dodla SK, Wang JJ, DeLaune RD (2012) Characterization of labile organic carbon in coastal wetland soils of the Mississippi River deltaic plain: Relationships to carbon functionalities. Sci Total Environ 435–436:151–158. https://doi.org/10.1016/j.scitotenv.2012.06.090

    CAS  Article  PubMed  Google Scholar 

  43. Evans RD, Johansen JR (1999) Microbiotic crusts and ecosystem processes. CRC Crit Rev Plant Sci 18:183–225. https://doi.org/10.1080/07352689991309199

    Article  Google Scholar 

  44. Frac M, Hannula SE, Belka M, Jȩdryczka M (2018) Fungal biodiversity and their role in soil health. Front Microbiol 9:707. https://doi.org/10.3389/fmicb.2018.00707

    Article  PubMed  PubMed Central  Google Scholar 

  45. Freeman KR, Martin AP, Karki D, Lynch RC, Mitter MS, Meyer AF, Longcore JE, Simmons DR, Schmidt SK (2009) Evidence that chytrids dominate fungal communities in high-elevation soils. Proc Natl Acad Sci USA 106:18315–18320. https://doi.org/10.1073/pnas.0907303106

    Article  PubMed  Google Scholar 

  46. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes–application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. https://doi.org/10.1111/j.1365-294x.1993.tb00005.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Glinka C, Hawkes CV (2014) Environmental controls on fungal community composition and abundance over 3 years in native and degraded shrublands. Microb Ecol 68:807–817. https://doi.org/10.1007/s00248-014-0443-0

    Article  PubMed  Google Scholar 

  48. Green LE, Porras-Alfaro A, Sinsabaugh RL (2008) Translocation of nitrogen and carbon integrates biotic crust and grass production in desert grassland. J Ecol 96:1076–1085. https://doi.org/10.1111/j.1365-2745.2008.01388.x

    CAS  Article  Google Scholar 

  49. Green SJ, Venkatramanan R, Naqib A (2015) Deconstructing the polymerase chain reaction: understanding and correcting bias associated with primer degeneracies and primer-template mismatches. PLoS One 10:e0128122. https://doi.org/10.1371/journal.pone.0128122

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Gu Y, Wang Y, Lu S, Xiang Q, Yu X, Zhao K, Zou L, Chen Q, Tu S, Zhang X (2017) Long-term fertilization structures bacterial and archaeal communities along soil depth gradient in a paddy soil. Front Microbiol 8:1516. https://doi.org/10.3389/fmicb.2017.01516

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gundlapally SR, Garcia-Pichel F (2006) The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation. Microb Ecol 52:345–357. https://doi.org/10.1007/s00248-006-9011-6

    Article  PubMed  Google Scholar 

  52. Havrilla CA, Chaudhary VB, Ferrenberg S, Antoninka AJ, Belnap J, Bowker MA, Eldridge DJ, Faist AM, Huber-Sannwald E, Leslie AD, Rodriguez‐Caballero E, Zhang Y, Barger NN (2019) Towards a predictive framework for biocrust mediation of plant performance: a meta‐analysis. J Ecol. https://doi.org/10.1111/1365-2745.13269

    Article  Google Scholar 

  53. Havrilla C, Leslie AD, Di Biase JL, Barger NN (2020) Biocrusts are associated with increased plant biomass and nutrition at seedling stage independently of root-associated fungal colonization. Plant Soil 446:331–342. https://doi.org/10.1007/s11104-019-04306-4

    CAS  Article  Google Scholar 

  54. Hawkes CV (2003) Nitrogen cycling mediated by biological soil crusts and arbuscular mycorrhizal fungi. Ecology 84:1553–1562. https://doi.org/10.1890/0012-9658(2003)084[1553:NCMBBS]2.0.CO;2

    Article  Google Scholar 

  55. Heindel RC, Governali FC, Spickard AM, Virginia RA (2019) The role of biological soil crusts in nitrogen cycling and soil stabilization in Kangerlussuaq, West Greenland. Ecosystems 22:243–256. https://doi.org/10.1007/s10021-018-0267-8

    CAS  Article  Google Scholar 

  56. Hernández-Hernández RM, Roldán A, Caravaca F, Rodriguez-Caballero G, Torres MP, Maestre FT, Alguacil MM (2017) Arbuscular mycorrhizal fungal assemblages in biological crusts from a Neotropical savanna are not related to the dominant perennial Trachypogon. Sci Total Environ 575:1203–1210. https://doi.org/10.1016/j.scitotenv.2016.09.190

    CAS  Article  PubMed  Google Scholar 

  57. Ho A, Di Lonardo DP, Bodelier PLE (2017) Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol Ecol 93:006. https://doi.org/10.1093/femsec

    Article  Google Scholar 

  58. Inglett PW, Reddy KR, Newman S, Lorenzen B (2007) Increased soil stable nitrogen isotopic ratio following phosphorus enrichment: Historical patterns and tests of two hypotheses in a phosphorus-limited wetland. Oecologia 153:99–109. https://doi.org/10.1007/s00442-007-0711-5

    CAS  Article  PubMed  Google Scholar 

  59. Jimenez Aguilar A, Huber-Sannwald E, Belnap J, Smart DR, Arredondo Moreno JT (2009) Biological soil crusts exhibit a dynamic response to seasonal rain and release from grazing with implications for soil stability. J Arid Environ 73:1158–1169. https://doi.org/10.1016/J.JARIDENV.2009.05.009

    Article  Google Scholar 

  60. Jones MN (1984) Nitrate reduction by shaking with cadmium: Alternative to cadmium columns. Water Res 18:643–646. https://doi.org/10.1016/0043-1354(84)90215-X

    CAS  Article  Google Scholar 

  61. Kadyampakeni DM, Morgan KT, Zekri M, Ferrarezi R, Schumann AW, Obreza TA (2017) Citrus irrigation management. UF/IFAS Electron. Data Inf Source SL446. https://edis.ifas.ufl.edu/ss660

  62. Kadyampakeni DM, Nkedi-Kizza P, Leiva JA, Muwamba A, Fletcher E, Morgan KT (2018) Ammonium and nitrate transport during saturated and unsaturated water flow through sandy soils. J Plant Nutr Soil Sci 181:198–210. https://doi.org/10.1002/jpln.201700405

    CAS  Article  Google Scholar 

  63. Kuske CR, Yeager CM, Johnson S, Ticknor LO, Belnap J (2012) Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands. ISME J 6:886–897. https://doi.org/10.1038/ismej.2011.153

    CAS  Article  PubMed  Google Scholar 

  64. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821. https://doi.org/10.1038/nbt.2676

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Lea-Cox JD, Syvertsen JP, Graetz DA (2001) Springtime 15nitrogen uptake, partitioning, and leaching losses from young bearing Citrus trees of differing nitrogen status. J Am Soc Hortic Sci 126:242–251. https://doi.org/10.21273/jashs.126.2.242

    Article  Google Scholar 

  66. Letcher PM, Powell MJ, Churchill PF, Chambers JG (2006) Ultrastructural and molecular phylogenetic delineation of a new order, the Rhizophydiales (Chytridiomycota). Mycol Res 110:898–915. https://doi.org/10.1016/J.MYCRES.2006.06.011

    CAS  Article  PubMed  Google Scholar 

  67. Letcher PM, Vélez CG, Barrantes ME, Powell MJ, Churchill PF, Wakefield WS (2008) Ultrastructural and molecular analyses of Rhizophydiales (Chytridiomycota) isolates from North America and Argentina. Mycol Res 112:759–782. https://doi.org/10.1016/J.MYCRES.2008.01.025

    Article  PubMed  Google Scholar 

  68. Li Y, Jing H, Xia X, Cheung S, Suzuki K, Liu H (2018) Metagenomic insights into the microbial community and nutrient cycling in the western subarctic pacific ocean. Front Microbiol 9:623. https://doi.org/10.3389/fmicb.2018.00623

    Article  PubMed  PubMed Central  Google Scholar 

  69. Li JY, Jin XY, Zhang XC, Chen L, Liu JL, Zhang HM, Zhang X, Zhang YF, Zhao JH, Ma ZS, Jin D (2020) Comparative metagenomics of two distinct biological soil crusts in the Tengger Desert, China. Soil Biol Biochem 140. https://doi.org/10.1016/j.soilbio.2019.107637

  70. Liao X, Inglett PW (2014) Dynamics of periphyton nitrogen fixation in short-hydroperiod wetlands revealed by high-resolution seasonal sampling. Hydrobiologia 722:263–277. https://doi.org/10.1007/s10750-013-1709-0

    CAS  Article  Google Scholar 

  71. Liao X, Inglett PW, Inglett KS (2016) Seasonal patterns of nitrogen cycling in subtropical short-hydroperiod wetlands: Effects of precipitation and restoration. Sci Total Environ 556:136–145. https://doi.org/10.1016/j.scitotenv.2016.02.203

    CAS  Article  PubMed  Google Scholar 

  72. Liu L, Liu Y, Zhang P, Song G, Hui R, Wang Z, Wang J (2017) Development of bacterial communities in biological soil crusts along a revegetation chronosequence in the Tengger Desert, northwest China. Biogeosciences 14:3801–3814. https://doi.org/10.5194/bg-14-3801-2017

    CAS  Article  Google Scholar 

  73. Liu M, Wang C, Wang F, Xie Y (2019) Maize (Zea mays) growth and nutrient uptake following integrated improvement of vermicompost and humic acid fertilizer on coastal saline soil. Appl Soil Ecol 142:147–154. https://doi.org/10.1016/j.apsoil.2019.04.024

    Article  Google Scholar 

  74. Liu X, Wang Y, Liu Y, Chen H, Hu Y (2020) Response of bacterial and fungal soil communities to Chinese Fir (Cunninghamia lanceolate) long-term monoculture plantations. Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.00181

  75. Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J 5:169–172. https://doi.org/10.1038/ismej.2010.133

    Article  PubMed  Google Scholar 

  76. Maestre FT, Martín N, Díez B, López-Poma R, Santos F, Luque I, Cortina J (2006) Watering, fertilization, and slurry inoculation promote recovery of biological crust function in degraded soils. Microb Ecol 52:365–377. https://doi.org/10.1007/s00248-006-9017-0

    Article  PubMed  Google Scholar 

  77. Mattos D, Graetz DA, Alva AK (2003) Biomass distribution and nitrogen-15 partitioning in citrus trees on a sandy Entisol. Soil Sci Soc Am J 67:555–563. https://doi.org/10.2136/sssaj2003.5550

    CAS  Article  Google Scholar 

  78. McMurdie PJ, Holmes S (2013) phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. https://doi.org/10.1371/journal.pone.0061217

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Miralles I, Soria R, Lucas-Borja ME, Soriano M, Ortega R (2020) Effect of biocrusts on bacterial community composition at different soil depths in Mediterranean semi-arid ecosystems. Sci Total Environ 138613. https://doi.org/10.1016/j.scitotenv.2020.138613

  80. Morgan KT, Obreza TA, Scholberg JMS, Parsons LR, Wheaton TA (2006) Citrus water uptake dynamics on a sandy Florida Entisol. Soil Sci Soc Am J 70:90. https://doi.org/10.2136/sssaj2005.0016

    CAS  Article  Google Scholar 

  81. Morgan KT, Kadyampakeni DM, Zekri M, Schumann AW, Vashisth T, Obreza TA (2019) 2019–2020 Florida citrus production guide: Nutrition management for citrus trees. UF/IFAS Electron. Data Inf Source CMG13. https://edis.ifas.ufl.edu/cg091

  82. Mugnai G, Rossi F, Felde VJMNL, Colesie C, Büdel B, Peth S, Kaplan A, De Philippis R (2018) Development of the polysaccharidic matrix in biocrusts induced by a cyanobacterium inoculated in sand microcosms. Biol Fertil Soils 54:27–40. https://doi.org/10.1007/s00374-017-1234-9

    Article  Google Scholar 

  83. Muñoz-Martín M, Becerra-Absalón I, Perona E, Fernández-Valbuena L, Garcia-Pichel F, Mateo P (2019) Cyanobacterial biocrust diversity in Mediterranean ecosystems along a latitudinal and climatic gradient. New Phytol 221:123–141. https://doi.org/10.1111/nph.15355

    CAS  Article  PubMed  Google Scholar 

  84. Mylavarapu R, Harris W, Hochmuth G (2016) Agricultural Soils of Florida. UF/IFAS Electron. Data Inf. Source SL441/SS655. https://edis.ifas.ufl.edu/ss655

  85. Nagy ML, Pacrez A, Garcia-Pichel F (2005) The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument, AZ). FEMS Microbiol Ecol 54:233–245. https://doi.org/10.1016/j.femsec.2005.03.011

    CAS  Article  PubMed  Google Scholar 

  86. Narihiro T, Terada T, Ohashi A, Kamagata Y, Nakamura K, Sekiguchi Y (2012) Quantitative detection of previously characterized syntrophic bacteria in anaerobic wastewater treatment systems by sequence-specific rRNA cleavage method. Water Res 46:2167–2175. https://doi.org/10.1016/J.WATRES.2012.01.034

    CAS  Article  PubMed  Google Scholar 

  87. Nevins CJ, Strauss SL, Inglett PW (2020) Biological soil crusts enhance moisture and nutrients in the upper rooting zone of sandy soil agroecosystems. J Plant Nutr Soil Sci 183:615–626. https://doi.org/10.1002/jpln.202000218

    CAS  Article  Google Scholar 

  88. Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glöckner FO, Tedersoo L, Saar I, Kõljalg U, Abarenkov K (2019) The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47:D259–D264. https://doi.org/10.1093/nar/gky1022

    CAS  Article  PubMed  Google Scholar 

  89. Norton J, Ouyang Y (2019) Controls and adaptive management of nitrification in agricultural soils. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.01931

  90. Ochoa-Hueso R, Maestre FT, De Los Ríos A, Valea S, Theobald MR, Vivanco MG, Manrique E, Bowker MA (2013) Nitrogen deposition alters nitrogen cycling and reduces soil carbon content in low-productivity semiarid Mediterranean ecosystems. Environ Pollut 179:185–193. https://doi.org/10.1016/j.envpol.2013.03.060

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. Ochoa-Hueso R, Delgado-Baquerizo M, Gallardo A, Bowker MA, Maestre FT (2016) Climatic conditions, soil fertility and atmospheric nitrogen deposition largely determine the structure and functioning of microbial communities in biocrust-dominated Mediterranean drylands. Plant Soil 399:271–282. https://doi.org/10.1007/s11104-015-2695-y

    CAS  Article  Google Scholar 

  92. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2019) vegan: Community Ecology Package (R package version 2.5-5.). https://cran.r-project.org/package=vegan

  93. Peng X, Bruns MA (2019a) Cyanobacterial soil surface consortia mediate N cycle processes in agroecosystems. Front Environ Sci 6:156. https://doi.org/10.3389/fenvs.2018.00156

    Article  Google Scholar 

  94. Peng X, Bruns MA (2019b) Development of a nitrogen-fixing cyanobacterial consortium for surface stabilization of agricultural soils. J Appl Phycol 31:1047–1056. https://doi.org/10.1007/s10811-018-1597-9

    CAS  Article  Google Scholar 

  95. Pietrasiak N (2015) Field guide to classify biological soil crusts for ecological site evaluation. Natural Resources Conservation Service, Washington, D.C.

  96. Pietrasiak N, Regus JU, Johansen JR, Lam D, Sachs JL, Santiago LS (2013) Biological soil crust community types differ in key ecological functions. Soil Biol Biochem 65:168–171. https://doi.org/10.1016/j.soilbio.2013.05.011

    CAS  Article  Google Scholar 

  97. Pietrasiak N, Drenovsky RE, Santiago LS, Graham RC (2014) Biogeomorphology of a Mojave Desert landscape - Configurations and feedbacks of abiotic and biotic land surfaces during landform evolution. Geomorphology 206:23–36. https://doi.org/10.1016/j.geomorph.2013.09.015

    Article  Google Scholar 

  98. Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10:551–562. https://doi.org/10.1038/nrmicro2831

    CAS  Article  PubMed  Google Scholar 

  99. Pombubpa N, Pietrasiak N, De Ley P, Stajich JE (2020) Insights into dryland biocrust microbiome: Geography, soil depth and crust type affect biocrust microbial communities and networks in Mojave Desert, USA. FEMS Microbiol Ecol 96. https://doi.org/10.1093/femsec/fiaa125

  100. Prosser JI, Head IM, Stein LY (2014) The family Nitrosomonadaceae. In: Rosenberg E, DeLong E, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, pp 901–918. https://doi.org/10.1007/978-3-642-30197-1_372

  101. Qiang-Sheng W, Ming-Qin C, Ying-Ning Z, Chu W, Xin-Hua H (2016) Mycorrhizal colonization represents functional equilibrium on root morphology and carbon distribution of trifoliate orange grown in a split-root system. Sci Hortic (Amsterdam) 199:95–102. https://doi.org/10.1016/J.SCIENTA.2015.12.039

    Article  Google Scholar 

  102. Quaggio JA, Souza TR, Zambrosi FCB, Mattos D, Boaretto RM, Silva G (2019) Citrus fruit yield response to nitrogen and potassium fertilization depends on nutrient-water management system. Sci Hortic (Amsterdam) 249:329–333. https://doi.org/10.1016/j.scienta.2019.02.001

    CAS  Article  Google Scholar 

  103. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. Quiñones A, Martínez-Alcántara B, Legaz F (2007) Influence of irrigation system and fertilization management on seasonal distribution of N in the soil profile and on N-uptake by citrus trees. Agric Ecosyst Environ 122:399–409. https://doi.org/10.1016/j.agee.2007.02.004

    CAS  Article  Google Scholar 

  105. R Development Core Team (2020) The R project for statistical computing. R Foundation for Statistical Computing, Vienna

  106. Raggio J, Allan Green TG, Pintado A, Sancho LG, Büdel B (2018) Environmental determinants of biocrust carbon fluxes across Europe: possibilities for a functional type approach. Plant Soil 429:147–157. https://doi.org/10.1007/s11104-018-3646-1

    CAS  Article  Google Scholar 

  107. Roncero-Ramos B, Muñoz-Martín M, Chamizo S, Fernández-Valbuena L, Mendoza D, Perona E, Cantón Y, Mateo P (2019) Polyphasic evaluation of key cyanobacteria in biocrusts from the most arid region in Europe. PeerJ 2019:e6169. https://doi.org/10.7717/peerj.6169

  108. Sancho LG, Belnap J, Colesie C, Raggio J, Weber B (2016) Carbon budgets of biological soil crusts at micro-, meso-, and global scales. In: Weber B, Bundel B, Belnap J (eds) Biological soil crusts: An organizing principle in drylands. Springer, Berlin, pp 287–304. https://doi.org/10.1007/978-3-319-30214-0_15

  109. Scharnagl K, Sanchez V, von Wettberg E (2018) The impact of salinity on mycorrhizal colonization of a rare legume, Galactia smallii, in South Florida pine rocklands. BMC Res Notes 11:2. https://doi.org/10.1186/s13104-017-3105-8

    Article  PubMed  PubMed Central  Google Scholar 

  110. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  111. Shade A (2017) Diversity is the question, not the answer. ISME J 11:1–6. https://doi.org/10.1038/ismej.2016.118

    Article  PubMed  Google Scholar 

  112. Sihi D, Inglett PW, Inglett KS (2016) Carbon quality and nutrient status drive the temperature sensitivity of organic matter decomposition in subtropical peat soils. Biogeochemistry 131:103–119. https://doi.org/10.1007/s10533-016-0267-8

    CAS  Article  Google Scholar 

  113. Sorochkina K, Inglett PW, Strauss SL (2020) Nitrogen fixation of soil biocrusts in Florida citrus and grape. Ecol Soc Am Conf

  114. Sparling GP, Feltham CW, Reynolds J, West AW, Singleton P (1990) Estimation of soil microbial c by a fumigation-extraction method: use on soils of high organic matter content, and a reassessment of the kec-factor. Soil Biol Biochem 22:301–307. https://doi.org/10.1016/0038-0717(90)90104-8

    Article  Google Scholar 

  115. Starkenburg SR, Reitenga KG, Freitas T, Johnson S, Chain PSG, Garcia-Pichel F, Kuske CR (2011) Genome of the cyanobacterium Microcoleus vaginatus FGP-2, a photosynthetic ecosystem engineer of arid land soil biocrusts worldwide. J Bacteriol 193:4569–4570. https://doi.org/10.1128/JB.05138-11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  116. Steven B, Gallegos-Graves LV, Yeager C, Belnap J, Kuske CR (2014) Common and distinguishing features of the bacterial and fungal communities in biological soil crusts and shrub root zone soils. Soil Biol Biochem 69:302–312. https://doi.org/10.1016/J.SOILBIO.2013.11.008

    CAS  Article  Google Scholar 

  117. ter Braak CJF, Verdonschot PFM (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57:255–289. https://doi.org/10.1007/BF00877430

    Article  Google Scholar 

  118. Torres-Cruz TJ, Howell AJ, Reibold RH, McHugh TA, Eickhoff MA, Reed SC (2018) Species-specific nitrogenase activity in lichen-dominated biological soil crusts from the Colorado Plateau, USA. Plant Soil 429:113–125. https://doi.org/10.1007/s11104-018-3580-2

    CAS  Article  Google Scholar 

  119. Tuomisto H (2010) A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography (Cop) 33:2–22. https://doi.org/10.1111/j.1600-0587.2009.05880.x

    Article  Google Scholar 

  120. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707. https://doi.org/10.1016/0038-0717(87)90052-6

    CAS  Article  Google Scholar 

  121. Wang J, Song Y, Ma T, Raza W, Li J, Howland JG, Huang Q, Shen Q (2017) Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil. Appl Soil Ecol 112:42–50. https://doi.org/10.1016/j.apsoil.2017.01.005

    Article  Google Scholar 

  122. Weber B, Büdel B, Belnap J (eds) (2016) Biological soil crusts: an organizing principle in drylands, vol 226. Springer International Publishing, Berlin. https://doi.org/10.1007/978-3-319-30214-0

  123. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR protocols: A guide to methods and applications. Academic Press Inc, Cambridge, pp 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

  124. Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30:279–338. https://doi.org/10.2307/1943563

    Article  Google Scholar 

  125. Wu Q-S, Zou Y-N, Huang Y-M (2013) The arbuscular mycorrhizal fungus Diversispora spurca ameliorates effects of waterlogging on growth, root system architecture and antioxidant enzyme activities of citrus seedlings. Fungal Ecol 6:37–43. https://doi.org/10.1016/J.FUNECO.2012.09.002

    Article  Google Scholar 

  126. Xia Y, Wang Y, Wang Y, Chin FYL, Zhang T (2016) Cellular adhesiveness and cellulolytic capacity in Anaerolineae revealed by omics-based genome interpretation. Biotechnol Biofuels 9:111. https://doi.org/10.1186/s13068-016-0524-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  127. Yao M, Rui J, Li J, Dai Y, Bai Y, Heděnec P, Wang J, Zhang S, Pei K, Liu C, Wang Y, Zhili He, Frouz J, Li X (2014) Rate-specific responses of prokaryotic diversity and structure to nitrogen deposition in the Leymus chinensis steppe. Soil Biol Biochem 79:81–90. https://doi.org/10.1016/J.SOILBIO.2014.09.009

    CAS  Article  Google Scholar 

  128. Yeager CM, Kuske CR, Carney TD, Johnson SL, Ticknor LO, Belnap J (2012) Response of biological soil crust diazotrophs to season, altered summer precipitation, and year-round increased temperature in an arid grassland of the Colorado Plateau, USA. Front Microbiol 3:358. https://doi.org/10.3389/fmicb.2012.00358

    Article  PubMed  PubMed Central  Google Scholar 

  129. Yeager CM, Gallegos-Graves LV, Dunbar J, Hesse CN, Daligault H, Kuske CR (2017) Polysaccharide degradation capability of actinomycetales soil isolates from a semiarid grassland of the Colorado plateau. Appl Environ Microbiol 83:e03020–e03016. https://doi.org/10.1128/AEM.03020-16

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  130. Zhang M, Alva AK, Li YC, Calvert DV (1996) Root distribution of grapefruit trees under dry granular broadcast vs. fertigation method. Plant Soil 183:79–84. https://doi.org/10.1007/BF02185567

    CAS  Article  Google Scholar 

  131. Zhang Y, Aradottir AL, Serpe M, Boeken B (2016a) Interactions of biological soil crusts with vascular plants. In: Bettina Weber B, Budel, Belnap J (eds) Biological soil crusts: An organizing principle in drylands. Springer International Publishing, Berlin, pp 385–406. https://doi.org/10.1007/978-3-319-30214-0_19

  132. Zhang B, Kong W, Wu N, Zhang Y (2016b) Bacterial diversity and community along the succession of biological soil crusts in the Gurbantunggut Desert, Northern China. J Basic Microbiol 56:670–679. https://doi.org/10.1002/jobm.201500751

    Article  PubMed  Google Scholar 

  133. Zhang B, Zhang Y, Li X, Zhang Y (2018) Successional changes of fungal communities along the biocrust development stages. Biol Fertil Soils 54:285–294. https://doi.org/10.1007/s00374-017-1259-0

    Article  Google Scholar 

  134. Zhang J, Bei S, Li B, Zhang J, Christie P, Li X (2019) Organic fertilizer, but not heavy liming, enhances banana biomass, increases soil organic carbon and modifies soil microbiota. Appl Soil Ecol 136:67–79. https://doi.org/10.1016/j.apsoil.2018.12.017

    Article  Google Scholar 

  135. Zhuang W, Downing A, Zhang Y (2015) The influence of biological soil crusts on 15 N translocation in soil and vascular plant in a temperate desert of northwestern China. J Plant Ecol 8:420–428. https://doi.org/10.1093/JPE/RTU033

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Kira Sorochkina of the Southwest Florida Research and Education Center Soil Microbiology Lab for assistance with sample collection and Rachel Berner and David Toole for assistance with laboratory and data analysis. We also thank Devin Leonard and Sophia Barbour of the University of Florida Wetland Biogeochemistry Lab for assistance with sample processing and nutrient analyses. The University of Illinois at Chicago DNA Services Facility (Chicago, Illinois) performed sequencing and Research Computing at the University of Florida (HiPerGator) provided servers for bioinformatics analyses.

Funding

This project was supported by United States Department of Agriculture- National Institute of Food and Agriculture- Agriculture and Food Research Initiative grant (2018-67019-27707) awarded to SLS and PWI and Hatch Grant (1011186) (SLS).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sarah L. Strauss.

Ethics declarations

Conflicts of interest/Competing interests

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Data availability

The datasets generated during this study are available in the NCBI Sequence Read Archive under BioProject identifier PRJNA635358.

Code availability

Code is available from the corresponding author upon reasonable request.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Zucong Cai.

Supplementary Information

ESM 1

(PDF 255 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nevins, C.J., Inglett, P.W. & Strauss, S.L. Biological soil crusts structure the subsurface microbiome in a sandy agroecosystem. Plant Soil (2021). https://doi.org/10.1007/s11104-021-04868-2

Download citation

Keywords

  • Biocrusts
  • Citrus
  • Microbial community composition
  • Microbial diversity
  • Nitrogen
  • Soil health