Rhizobacteria associated with Miscanthus x giganteus improve metal accumulation and plant growth in the flotation tailings

Abstract

Purpose

Flotation tailings represent an extremely unfriendly substrate for plant colonization due to toxic metal concentrations and marked macronutrient deficiencies. The perennial grass Miscanthus x giganteus J.M.Greef & Deuter ex Hodk. & Renvoize was successfully cultivated in this infertile substrate for two years. Our aim was to identify composition of its rhizosphere bacterial community and to analyze the effects of the selected rhizobacteria on plant growth, root development, metal and P uptake.

Methods

Using the cultivation-dependent method, 75 isolates were collected from the rhizosphere and six rhizobacterial strains were selected for further characterization based on morphological and biochemical differences. The plant rhizomes were inoculated with the consortium of rhizobacteria and cultivated in the flotation tailings substrate.

Results

Detected bacterial strains were characterized as metal-resistant and plant growth-promoting rhizobacteria (PGPR) because of their metal tolerance (NiCl2, Pb(C2H3O2)2, CuSO4, NaAsO2, MnCl2) and some or all of the plant growth-promoting (PGP) properties (indole-3-acetic acid and siderophore production, 1-aminocyclopropane-1-carboxylic acid deaminase activity and phosphate solubilization). PGPR mitigated the negative effects of high metal concentrations and macronutrient deficiency as shown by stimulated lateral roots development, increased root hair length, plant below and above ground biomass yield, higher plant P uptake and metal accumulation rate.

Conclusions

The isolated PGPR strains could be used in PGP-bacteria assisted phytoremediation of flotation tailings and metal polluted soils by M. x giganteus. Their PGP effects on various metal-tolerant target plant species in the respective substrate remain to be verified.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Code availability

Not applicable.

References

  1. Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158:219e 224. https://doi.org/10.1046/j.1469-8137.2003.00721.x

    CAS  Article  Google Scholar 

  2. Aggarwall A, Sharma I, Tripathi BN, Munjal K, Baunthiyal M, Sharma V (2012) Metal toxicity and photosynthesis. In: Itoh S, Mohanty P, Guruprasad KN (eds) Photosynthesis: Overviews on recent progress & future perspective. IK International Publishing House, New Delhi, pp 229–236

    Google Scholar 

  3. Amaresan N, Kumar K, Sureshbabu K, Madhuri K (2013) Plant growth-promoting potential of bacteria isolated from active volcano sites of Barren Island, India. Lett Appl Microbiol 58:30–137. https://doi.org/10.1111/lam.12165

    CAS  Article  Google Scholar 

  4. Andrejić G, Gajić G, Prica M, Dželetović Ž, Rakić T (2018) Zinc accumulation, photosynthetic gas exchange, and chlorophyll a fluorescence in Zn-stressed Miscanthus × giganteus plants. Photosynthetica 56(4):1249–1258. https://doi.org/10.1007/s11099-018-0827-3

  5. Andrejić G, Šinžar-Sekulić J, Prica M, Dželetović Ž, Rakić T (2019) Phytoremediation potential and physiological response of Miscanthus × giganteus cultivated on fertilized and non-fertilized flotation tailings. Environ Sci Pollut Res 26:34658–34669. https://doi.org/10.1007/s11356-019-06543-7

    Article  Google Scholar 

  6. Arif N, Yadav V, Singh S, Singh S, Ahmad P, Mishra RK, Sharma S, Tripathi DK, Dubey NK, Chauhan DK (2016) Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development. Front Environ Sci 4:Article 69. https://doi.org/10.3389/fenvs.2016.00069

  7. Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362. https://doi.org/10.1016/j.tibtech.2007.05.005

    CAS  Article  PubMed  Google Scholar 

  8. Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473. https://doi.org/10.3389/fpls.2018.01473

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bahmani R, Kim DG, Kim JA, Hwang S (2016) The density and length of root hairs are enhanced in response to cadmium and arsenic by modulating gene expressions involved in fate determination and morphogenesis of root hairs in Arabidopsis. Front Plant Sci 7:1763. https://doi.org/10.3389/fpls.2016.01763

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bais HP, Park S-W, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32. https://doi.org/10.1016/j.tplants.2003.11.008

    CAS  Article  PubMed  Google Scholar 

  11. Bar-Ness E, Chen Y, Hadar Y, Marchner H, Romheld V (1991) Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant Soil 130(1–2):231–241. https://doi.org/10.1007/BF00011878

    CAS  Article  Google Scholar 

  12. Bates TR, Lynch JP (2000) The efficiency of Arabidopsis thaliana (Brassicaceae) root hairs in phosphorus acquisition. Am J Bot 87(7):964–970

    CAS  Article  Google Scholar 

  13. Bates TR, Lynch JP (2001) Root hairs confer a competitive advantage under low phosphorus availability. Plant Soil 236:243–250. https://doi.org/10.1023/A:1012791706800

  14. Baxter I (2009) Ionomics: Studying the social network of mineral nutrients. Curr Opin Plant Biol 12:381–386. https://doi.org/10.1016/j.pbi.2009.05.002

  15. Ben Salem Z, Laffray X, Al-Ashoor A, Ayadi H, Aleya L (2017) Metals and metalloid bioconcentrations in the tissues of Typha latifolia grown in the four interconnected ponds of a domestic landfill site. J Environ Sci 54:56–68. doi:https://doi.org/10.1016/j.jes.2015.10.039

    CAS  Article  Google Scholar 

  16. Bradshaw AD, Chadwick MJ (1980) The restoration of land. Blackwell Scientific Publications, Oxford

    Google Scholar 

  17. Braud A, Jezequel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280e286. https://doi.org/10.1016/j.chemosphere.2008.09.013

    CAS  Article  Google Scholar 

  18. Broadley M, Brown P, Cakmak I, Rengel Z, Zhao F (2012) Function of nutrients: Micronutrients. In: Marschner P (ed) Mineral nutrition of higher plants. Academic Press Inc, San Diego, pp 191–248

    Google Scholar 

  19. Combes-Meynet E, Pothier JF, Moenne-Loccoz Y, Prigent-Combaret C (2011) The Pseudomonas secondary metabolite 2,4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion. Mol Plant Microbe Interact 24:271–284. https://doi.org/10.1094/MPMI-07-10-0148

    CAS  Article  PubMed  Google Scholar 

  20. Domenech J, Reddy MS, Kloepper JW, Ramos B, Gutierrez-Manero J (2006) Combined application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato. Biocontrol 51:245–258. https://doi.org/10.1007/s10526-005-2940-z

    CAS  Article  Google Scholar 

  21. Draganić V, Lozo J, Biočanin M, Dimkić I, Garalejić E, Fira Đ, Stanković S, Berić T (2017) Genotyping of Bacillus spp isolate collection from natural samples. Genetika 49(2):445–456. https://doi.org/10.2298/GENSR1702445D

    Article  Google Scholar 

  22. Dubois M, Van den Broeck L, Inzé D (2018) The pivotal role of ethylene in plant growth. Trends Plant Sci 23(4):311–323. https://doi.org/10.1016/j.tplants.2018.01.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Egamberdieva D (2011) Indole-acetic acid production by root associated bacteria and its role in plant growth and development. In: Keller AH, Fallon MD (eds) Auxins: Structure, Biosynthesis and Functions, Chapter: 7. Nova Publishers, Hauppauge

    Google Scholar 

  24. Egnér H, Riehm H, Domingo WR (1960) Untersuchungen uber die chemische Bodenanalyse als Grundlage fur die Beurteilung des Nährstoffzustandes der Böden II Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung. Kungl Lantbrukshögskolans Ann 26:199–215

    Google Scholar 

  25. Gadd GM (2010) Metals: minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    CAS  Article  Google Scholar 

  26. Gahoonia TS, Nielsen NE (2004) Barley genotypes with long root hairs sustain high grain yields in low-P field. Plant Soil 262:55–62. https://doi.org/10.1023/B:PLSO.0000037020.58002.ac

    CAS  Article  Google Scholar 

  27. Gajić G, Djurdjević L, Kostić O, Jarić S, Mitrović M, Pavlović P (2018) Ecological potential of plants for phytoremediation and ecorestoration of fly ash deposits and mine wastes. Front Environ Sci 13. https://doi.org/10.3389/fenvs.2018.00124

  28. Gamalero E, Glick BR (2010) Bacterial ACC deaminase and IAA: interactions and consequences for plant growth in polluted environments. In: Golubev IA (ed) Handbook of Phytoremediation. Nova Science Publishers, Inc, Hauppauge, pp 763–774

  29. Gamalero E, Glick BR (2015) Bacterial modulation of plant ethylene levels. Plant Physiol 169(1):13–22. https://doi.org/10.1104/pp.15.00284

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Garbeva P, Silby MW, Raaijmakers JM, Levy SB, de Boer W (2011) Transcriptional and antagonistic responses of Pseudomonas fluorescens Pf0-1 to phylogenetically different bacterial competitors. ISME J 5:973–985. https://doi.org/10.1038/ismej.2010.196

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 963401. https://doi.org/10.6064/2012/963401

  32. Guo H, Hong C, Chen X, Xu Y, Liu Y, Jiang D, Zheng B (2016) Different growth and physiological responses to cadmium of the Three Miscanthus species. PLoS One 11(4):e0153475. https://doi.org/10.1371/journal.pone.0153475

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Hermans C, Hammond JP, White PJ, Verbuggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11(12):610–617. https://doi.org/10.1016/j.tplants.2006.10.007

    CAS  Article  PubMed  Google Scholar 

  34. Hol GWH, Bezemer TM, Biere A (2013) Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens. Front Plant Sci 4:81. https://doi.org/10.3389/fpls.2013.00081

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ismail AM, Heuer S, Thomson MJ, Wissuwa M (2007) Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol Biol 65:547–570. https://doi.org/10.1007/s11103-007-9215-2

    CAS  Article  PubMed  Google Scholar 

  36. Johnstone TC, Nolan EM (2015) Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans 44(14):6320–6339. https://doi.org/10.1039/C4DT03559C

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Jones P, Garcia BJ, Furches A, Tuskan GA, Jacobson D (2019) Plant host-associated mechanisms for microbial selection. Front Plant Sci 10:862. https://doi.org/10.3389/fpls.2019.00862

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kotoky R, Nath S, Kumar Maheshwari D, Pandey P (2019) Cadmium resistant plant growth promoting rhizobacteria Serratia marcescens S2I7 associated with the growth promotion of rice plant. Environ Sustain 2:135–144. https://doi.org/10.1007/s42398-019-00055-3

    CAS  Article  Google Scholar 

  39. Kumar KV, Singh N, Behl HM, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683. https://doi.org/10.1016/j.chemosphere.2008.03.025

    CAS  Article  PubMed  Google Scholar 

  40. Küpper H, Andresen E (2016) Mechanisms of metal toxicity in plants. Metallomics 8:269–285. https://doi.org/10.1039/c5mt00244c

    Article  PubMed  Google Scholar 

  41. Lasat HA (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31(1):109–120. https://doi.org/10.2134/jeq2002.1090

    CAS  Article  PubMed  Google Scholar 

  42. Lodewyckx C, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D (2002) Isolation, characterization, and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp calaminaria. Int J Phytoremediat 4:101e115. https://doi.org/10.1080/15226510208500076

    Article  Google Scholar 

  43. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918

    CAS  Article  PubMed  Google Scholar 

  44. Marulanda A, Barea JM, Azcon R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124. https://doi.org/10.1007/s00344-009-9079-6

    CAS  Article  Google Scholar 

  45. Maughan M, Bollero G, Lee DK, Darmody R, Bonos S, Cortese L, Murphy J, Gaussoin R, Sousek M, Williams D, Williams L, Miguez F, Voigt T (2012) Miscanthus x giganteus productivity: the effects of management in different environments. GCB Bioenergy 4:253e265. https://doi.org/10.1111/j.1757-1707.2011.01144.x

    Article  Google Scholar 

  46. Naidu SL, Moose SP, Al-Shoaibi AK, Raines CA, Long SP (2003) Cold tolerance of C4 photosynthesis in Miscanthus × giganteus: Adaptation in amounts and sequence of C4 photosynthetic enzymes. Plant Physiol 132:1688–1697. https://doi.org/10.1104/pp.103.021790

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Nestler J, Wissuwa M (2016) Superior root hair formation confers root efficiency in some, but not all, rice genotypes upon P deficiency. Front Plant Sci 7:1935. https://doi.org/10.3389/fpls.2016.01935

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nestler J, Keyes SD, Wissuwa M (2016) Root hair formation in rice (Oryza sativa L) differs between root types and is altered in artificial growth conditions. J Exp Bot 67:3699–3708. https://doi.org/10.1093/jxb/erw115

    CAS  Article  PubMed  Google Scholar 

  49. Nsanganwimana F, Pourrut B, Waterlot C, Louvel B, Bidar G, Labidi S, Fontaine J, Muchembled J, Lounès-Hadj Sahraoui A, Fourrier H, Douay F (2015) Metal accumulation and shoot yield of Miscanthus × giganteus growing in contaminated agricultural soils: Insights into agronomic practices. Agric Ecosyst Environ 213:61–71. https://doi.org/10.1016/j.agee.2015.07.023

    CAS  Article  Google Scholar 

  50. Nsanganwimana F, Waterlot C, Louvel B, Pourrut B, Douay F (2016) Metal, nutrient and biomass accumulation during the growing cycle of Miscanthus established on metal contaminated soils. J Plant Nutr Soil Sc 179(2):157–169. https://doi.org/10.1002/jpln.201500163

    CAS  Article  Google Scholar 

  51. Pansu M, Gautheyroy J (2006) Handbook of Soil analysis. Mineralogical, organic and inorganic methods. Springer, Berlin

    Google Scholar 

  52. Pavel PB, Puschenreiter M, Wenzel WW, Diacu E, Barbu CH (2014) Aided phytostabilization using Miscanthus sinensis × giganteus on heavy metal-contaminated soils. Sci Total Environ 479–480:125–131. https://doi.org/10.1016/j.scitotenv.2014.01.097

    CAS  Article  PubMed  Google Scholar 

  53. Pidlisnyuk V, Erickson L, Trögl J, Shapoval P, Davis L, Popelka J, Stefanovska T, Hettiarachchi G (2018) Metals uptake behaviour in Miscanthus x giganteus plant during growth at the contaminated soil from the military site in Sliač, Slovakia. Pol J ChemTechnol 20(2):1–7. https://doi.org/10.2478/pjct-2018-0016

    CAS  Article  Google Scholar 

  54. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39. https://doi.org/10.1146/annurev.arplant.56.032604.144214

    CAS  Article  PubMed  Google Scholar 

  55. Pogrzeba M, Rusinowski S, Krzyżak J (2018) Macroelements and heavy metals content in energy crops cultivated on contaminated soil under different fertilization—case studies on autumn harvest. Environ Sci Pollut Res Int 25:12096–12106. https://doi.org/10.1007/s11356-018-1490-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Prica M, Andrejić G, Šinžar-Sekulić J, Rakić TS, Dželetović Ž (2019) Bioaccumulation of heavy metals in common reed (Phragmites australis) growing spontaneously on highly contaminated mine tailing ponds in Serbia and potential use of this species in phytoremediation. Bot Serb 43(1):85–95. https://doi.org/10.2298/BOTSERB1901085P

    Article  Google Scholar 

  57. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org

  58. Rahman A, Sitepu IR, Tang SY, Hashidoko Y (2010) Salkowski’s reagent test as a primary screening index for functionalities of rhizobacteria isolated from wild dipterocarp saplings growing naturally on medium-strongly acidic tropical peat soil. Biosci Biotechnol Biochem 74:2202–2208. https://doi.org/10.1271/bbb.100360

    CAS  Article  PubMed  Google Scholar 

  59. Rajkumar M, Freitas H (2007) Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71:834–842. https://doi.org/10.1016/j.chemosphere.2007.11.038

    CAS  Article  Google Scholar 

  60. Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore- producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149. https://doi.org/10.1016/j.tibtech.2009.12.002

    CAS  Article  PubMed  Google Scholar 

  61. Sade N, del Mar Rubio-Wilhelmi M, Umnajkitikorn K, Blumwald E (2018) Stress-induced senescence and plant tolerance to abiotic stress. J Exp Bot 69(4):845–853. https://doi.org/10.1093/jxb/erx235

    CAS  Article  PubMed  Google Scholar 

  62. Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854. https://doi.org/10.1111/j.1462-2920.2011.02556.x

    CAS  Article  Google Scholar 

  63. Schlaeppi K, Dombrowski N, Oter RG, van Themaat EVL, Schulze-Lefert P (2014) Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. PNAS 111(2):585–592. https://doi.org/10.1073/pnas.1321597111

    CAS  Article  PubMed  Google Scholar 

  64. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Ana Biochem 160:46–56. https://doi.org/10.1016/0003-2697(87)90612-9

    Article  Google Scholar 

  65. Siddikee MA, Glick BR, Chauhan PS, Yim Wj, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49:427–434. https://doi.org/10.1016/j.plaphy.2011.01.015

    CAS  Article  PubMed  Google Scholar 

  66. Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:1–32. https://doi.org/10.1155/2011/939161

    Article  Google Scholar 

  67. Tirry N, Tahri Joutey N, Sayel H, Kouchou A, Bahafid W, Asri M, El Ghachtouli N (2018) Screening of plant growth promoting traits in heavy metals resistant bacteria: Prospects in phytoremediation. J Genet Eng Biotechnol 16(2):613–619. https://doi.org/10.1016/j.jgeb.2018.06.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Tordoff GM, Baker AJM, Willis AJ (2000) Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41:219–228. https://doi.org/10.1016/S0045-6535(99)00414-2

    CAS  Article  PubMed  Google Scholar 

  69. Tovar-Sánchez E, Hernández-Plata I, Martínez MS, Valencia-Cuevas L, Mussali Galante P (2018) Heavy metal pollution as a biodiversity threat. In: El-Din Saleh H, Aglan R (eds) Heavy Metals. IntechOpen, London, pp 383–399. https://doi.org/10.5772/intechopen.74052

  70. Ullah A, Mushtaq H, Ali H, Munis MFH, Javed MT, Chaudhary HJ (2015) Diazotrophs-assisted phytoremediation of heavy metals: a novel approach. Environ Sci Pollut Res 22:2505–2514. https://doi.org/10.1007/s11356-014-3699-5

    CAS  Article  Google Scholar 

  71. USEPA Method 3051 (1998) Microwave assisted acid digestion of sediments, sludges and oils. Test methods for evaluating solid waste, SW-846. Environmental Protection Agency, Washington, DC

    Google Scholar 

  72. Wanat N, Austruy A, Joussein E, Soubrand M, Hitmi A, Gauthier-Moussard C, Lenain JF, Vernay P, Munch JC, Pichon M (2013) Potentials of Miscanthus × giganteus grown on highly contaminated Technosols. J Geochem Explor 126–127:78–84. https://doi.org/10.1016/j.gexplo.2013.01.001

    CAS  Article  Google Scholar 

  73. Yan-de J, Zhen-li H, Xiao-e Y (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8:192–207. https://doi.org/10.1631/jzus.2007.B0192

    CAS  Article  Google Scholar 

  74. Zhu J, Zhang C, Lynch JP (2010) The utility of phenotypic plasticity of root hair length for phosphorus acquisition. Funct Plant Biol 37:313–322. https://doi.org/10.1071/FP09197

    Article  Google Scholar 

  75. Zhuang P, Lu H, Li Z, Zou B, McBride MB (2014) Multiple exposure and effects assessment of heavy metals in the population near mining area in South China. PLoS One 9(4):e94484. https://doi.org/10.1371/journal.pone.0094484

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Serbian Ministry of Education, Science and Technological Development (Grant No.451-03-68/2020-14/200178). We thank the staff of the mine “Rudnik” for providing us the experimental field on the flotation tailings.

Funding

Serbian Ministry of Education, Science and Technological Development (Grant No. 451-03-68/2020-14/200178).

Author information

Affiliations

Authors

Contributions

TR, JL - conceptualization, formal analysis, writing-original draft; MP, NK, GA-methodology; ŽDž, SS, DjF - wrighting-review & editing; TR, DjF-funding.

Corresponding author

Correspondence to Tamara Rakić.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article. 

Ethics approval

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Juan Barcelo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rakić, T., Pešić, M., Kostić, N. et al. Rhizobacteria associated with Miscanthus x giganteus improve metal accumulation and plant growth in the flotation tailings. Plant Soil (2021). https://doi.org/10.1007/s11104-021-04865-5

Download citation

Keywords

  • Metals/metalloids
  • Microorganisms
  • Phytoremediation
  • PGPR
  • Toxicity