Hydrogen sulfide mediates DNA methylation to enhance osmotic stress tolerance in Setaria italica L.


Background and aims

DNA methylation is an important form of epigenetic modification. It has a vital role in regulating plant growth and development, and also participates in plant response to various stresses. In recent years, hydrogen sulfide (H2S) has been shown to have similar functions as DNA methylation, but crosstalk between DNA methylation and H2S in the acquisition of drought resistance is unclear. In this study, foxtail millet (Setaria italica L.), a drought-resistant model crop, was selected as the experimental material to explore the subtle relationship between H2S and DNA methylation.


The quantitative real-time (qRT)-PCR, bisulfite sequencing PCR (BSP), DNA methyltransferase (DNMT) activity detection and other techniques were used to analyze the differences of millet seedlings under osmotic stress, before and after H2S treatment.


Osmotic stress induced the transcriptional expression and activity of key enzymes in H2S biosynthesis which regulated the accumulation of endogenous H2S. Physiological concentration of H2S (50 μM) can effectively alleviate the decrease of total DNMT activity and transcription level caused by osmotic stress, while the effective inhibitor of H2S biosynthesis, hydroxylamine (HA), can aggravate this change. Furthermore, transcription factors (TFs) responsive to both ‘osmotic stress’ and ‘H2S signal’ were screened. Six of them were selected to conduct further BSP analysis on seven CpG islands in their promoter regions. The results showed that, with H2S treatment, two CpG islands were hypermethylated, two were not, and three exhibited insensitivity to H2S.


H2S signals may improve osmotic stress tolerance of foxtail millet by mediating DNA methylation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8



Hydrogen sulfide


Polyethylene glycol


Bisulfite sequencing PCR


DNA methyltransferase




Transcription factor






Domains rearranged methyltransferase


Abscisic acid


Ethylene diamine tetraacetic acid


Cysteine desulfhydrases


L-cysteine desulfhydrase


D-cysteine desulfhydrase




Repressor of Silencing 1




Murashige and Skoog


  1. Aroca A, Gotor G, Romero L (2018) Hydrogen sulfide signaling in plants: emerging roles of protein persulfidation. Front Plant Sci 9:1369. https://doi.org/10.3389/fpls.2018.01369

    Article  PubMed  PubMed Central  Google Scholar 

  2. Asimakopoulou A, Panopoulos P, Chasapis C, Coletta C, Zhou Z, Cirino G, Giannis A, Szabo C, Spyroulias G, Papapetropoulos A (2013) Selectivity of commonly used pharmacological inhibitors for cystathionine β synthase (CBS) and cystathionine γ lyase (CSE). Br J Pharmacol 169:922–932. https://doi.org/10.1111/bph.12171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Barton L, Newsome SD, Chen FH, Wang H, Guilderson TP, Bettinger RL (2009) Agricultural origins and the isotopic identity of domestication in northern China. PNAS 106:5523–5528. https://doi.org/10.1073/pnas.0809960106

    Article  PubMed  Google Scholar 

  4. Bock C, Reither S, Mikeska T, Paulsen M, Walter J, Lengauer T (2005) BiQ analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics 21:4067–4068. https://doi.org/10.1093/bioinformatics/bti652

    Article  PubMed  CAS  Google Scholar 

  5. Bodner G, Nakhforoosh A, Kaul HP (2015) Management of crop water under drought: a review. Agron Sustain Dev 35:401–442. https://doi.org/10.1007/s13593-015-0283-4

    Article  Google Scholar 

  6. Boyes J, Bird A (1991) DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 64:1123–1134. https://doi.org/10.1016/0092-8674(91)90267-3

    Article  PubMed  CAS  Google Scholar 

  7. Cao X, Jacobsen SE (2002) Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol 12:1138–1144. https://doi.org/10.1016/s0960-9822(02)00925-9

    Article  PubMed  CAS  Google Scholar 

  8. Chang L, Zhang Z, Han B, Li H, Dai H, He P, Tian H (2009) Isolation of DNA-methyltransferase genes from strawberry (Fragaria × ananassa Duch.) and their expression in relation to micropropagaton. Plant Cell Rep 28:1373–1384. https://doi.org/10.1007/s00299-009-0737-8

    Article  PubMed  CAS  Google Scholar 

  9. Chen S, Jia H, Wang X, Shi C, Wang X, Ma P, Wang J, Ren M, Li J (2020) Hydrogen sulfide positively regulates abscisic acid signaling through persulfidation of SnRK2.6 in guard cells. Mol Plant [online now]. https://doi.org/10.1016/j.molp.2020.01.004

  10. Corpas F (2019) Hydrogen sulfide: a new warrior against abiotic stress. Trends Plant Sci 24:983–988. https://doi.org/10.1016/j.tplants.2019.08.003

    Article  PubMed  CAS  Google Scholar 

  11. Du X, Jin Z, Zhang L, Liu X, Yang G, Pei Y (2019) H2S is involved in ABA-mediated stomatal movement through MPK4 to alleviate drought stress in Arabidopsis thaliana. Plant Soil 435:295–307. https://doi.org/10.1007/s11104-018-3894-0

    Article  CAS  Google Scholar 

  12. Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72:673–689. https://doi.org/10.1007/s00018-014-1767-0

    Article  PubMed  CAS  Google Scholar 

  13. Fang H, Liu Z, Long Y, Liang Y, Jin Z, Zhang L, Liu D, Li H, Zhai J, Pei Y (2017) The Ca2+/CaM2 binding transcription factor TGA3 elevates LCD expression and H2S production to bolster Cr6+ tolerance in Arabidopsis. Plant J 91:1038–1050. https://doi.org/10.1111/tpj.13627

    Article  PubMed  CAS  Google Scholar 

  14. García-Mata C, Lamattina L (2010) Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. New Phytol 188:977–984. https://doi.org/10.1111/j.1469-8137.2010.03465.x

    Article  PubMed  CAS  Google Scholar 

  15. Han Y, Yang H, Wu M, Yi H (2019) Enhanced drought tolerance of foxtail millet seedlings by sulfur dioxide fumigation. Ecotoxicol Environ Saf 178:9–16. https://doi.org/10.1016/j.ecoenv.2019.04.006

    Article  PubMed  CAS  Google Scholar 

  16. Jin Z, Pei Y (2015) Physiological implications of hydrogen sulfide in plants: pleasant exploration behind its unpleasant odour. Oxidative Med Cell Longev 2015:397502–397506. https://doi.org/10.1155/2015/397502

    Article  Google Scholar 

  17. Jin Z, Shen J, Qiao Z, Yang G, Wang R, Pei Y (2011) Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochem Biophys Res Commun 414:481-486. https://doi.org/10.1016/j.bbrc.2011.09.090

  18. Jin Z, Xue S, Luo Y, Tian B, Fang H, Li H, Pei Y (2013) Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis. Plant Physiol Biochem 62:41–46. https://doi.org/10.1016/j.plaphy.2012.10.017

    Article  PubMed  CAS  Google Scholar 

  19. Jin Z, Wang Z, Ma Q, Sun L, Zhang L, Liu Z, Liu D, Hao X, Pei Y (2017) Hydrogen sulfide mediates ion fluxes inducing stomatal closure in response to drought stress in Arabidopsis thaliana. Plant Soil 419:141–152. https://doi.org/10.1007/s11104-017-3335-5

    Article  CAS  Google Scholar 

  20. Khan A, Yadav NS, Morgenstern Y, Zemach A, Grafi G (2016) Activation of Tag1 transposable elements in Arabidopsis dedifferentiating cells and their regulation by CHROMOMETHYLASE 3-mediated CHG methylation. Biochim Biophys Acta 1859:1289–1298. https://doi.org/10.1016/j.bbagrm.2016.07.012

    Article  PubMed  CAS  Google Scholar 

  21. Kumar S, Kumari R, Sharma V, Sharma V (2013) Roles and establishment, maintenance and erasing of the epigenetic cytosine methylation marks in plants. J Genet 92:629–666. https://doi.org/10.1007/s12041-013-0273-8

    Article  PubMed  CAS  Google Scholar 

  22. Labra M, Ghiani A, Citterio S, Sgorbati S, Sala F, Vannini C, Ruffini M, Bracale M (2002) Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biol 4:694–699. https://doi.org/10.1055/s-2002-37398

    Article  CAS  Google Scholar 

  23. Lata C, Gupta S, Prasad M (2013) Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol 33:328–343. https://doi.org/10.3109/07388551.2012.716809

    Article  PubMed  Google Scholar 

  24. Li L, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18:1427–1431. https://doi.org/10.1093/bioinformatics/18.11.1427

    Article  PubMed  CAS  Google Scholar 

  25. Li Z, Yang S, Long W, Yang G, Shen Z (2013) Hydrogen sulphide may be a novel downstream signal molecule in nitric oxide-induced heat tolerance of maize (Zea mays L.) seedlings. Plant Cell Environ 36:1564–1572. https://doi.org/10.1111/pce.12092

    Article  PubMed  CAS  Google Scholar 

  26. Li Z, Min X, Zhou Z (2016) Hydrogen sulfide: a signal molecule in plant cross-adaptation. Front Plant Sci 7:1621. https://doi.org/10.3389/fpls.2016.01621

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li H, Li M, Wei X, Zhang X, Xue R, Zhao Y, Zhao H (2017) Transcriptome analysis of drought responsive genes regulated by hydrogen sulfide in wheat (Triticum aestivum L.) leaves. Mol Gen Genomics 292:1091–1110. https://doi.org/10.1007/s00438-017-1330-4

    Article  CAS  Google Scholar 

  28. Li Z, Zhu Y, He X, Yong B, Peng Y, Zhang X, Ma X, Yan Y, Huang L, Gang N (2019) The hydrogen sulfide, a downstream signaling molecule of hydrogen peroxide and nitric oxide, involves spermidine-regulated transcription factors and antioxidant defense in white clover in response to dehydration. Environ Exp Bot 161:255–264. https://doi.org/10.1016/j.envexpbot.2018.06.036

    Article  CAS  Google Scholar 

  29. Liang D, Zhang Z, Wu H, Huang C, Shuai P, Ye CY, Tang S, Wang Y, Yang L, Wang J, Xia X (2014) Single-base-resolution methylomes of populus trichocarpa reveal the association between DNA methylation and drought stress. BMC Genet 15:9. https://doi.org/10.1186/1471-2156-15-S1-S9

    Article  Google Scholar 

  30. Liu Z, Li Y, Cao C, Liang S, Ma Y, Liu X, Pei Y (2019) The role of H2S in low temperature-induced cucurbitacin C increases in cucumber. Plant Mol Biol 99:535-544. https://doi.org/10.1007/s11103-019-00834-w.

  31. Manoharlal R, Saiprasad GVS, Ullagaddi C, Kovarik A (2018) Gibberellin A3 as an epigenetic determinant of global DNA hypo-methylation in tobacco. Biol Plantarum 62:11–23. https://doi.org/10.1007/s10535-017-0738-3

    Article  CAS  Google Scholar 

  32. Matzke MA, Birchler JA (2005) RNAi-mediated pathways in the nucleus. Nat Rev Genet 6:24–35. https://doi.org/10.1038/nrg1500

    Article  PubMed  CAS  Google Scholar 

  33. Osakabe Y, Osakabe K, Shinozaki K, Tran LS (2014) Response of plants to water stress. Front Plant Sci 5:86. https://doi.org/10.3389/fpls.2014.00086

    Article  PubMed  PubMed Central  Google Scholar 

  34. Papanatsiou M, Scuffi D, Blatt MR, García-Mata C (2015) Hydrogen sulfide regulates inward- rectifying K+ channels in conjunction with stomatal closure. Plant Physiol 168:29–35. https://doi.org/10.1104/pp.114.256057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Papenbrock J, Riemenschneider A, Kamp A, Schulz-Vogt HN, Schmidt A (2007) Characterization of cysteine⁃degrading and H2S⁃releasing enzymes of higher plants ⁃ from the field to the test tube and back. Plant Biol 9:582–588. https://doi.org/10.1055/s-2007-965424

    Article  PubMed  CAS  Google Scholar 

  36. Qiao Z, Jing T, Liu Z, Zhang L, Jin Z, Liu D, Pei Y (2015) H2S acting as a downstream signaling molecule of SA regulates cd tolerance in Arabidopsis. Plant Soil 393:137–146. https://doi.org/10.1007/s11104-015-2475-8

    Article  CAS  Google Scholar 

  37. Romero LC, Aroca MA, Laureano-Marin AM, Moreno I, García I, Gotor C (2014) Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana. Mol Plant 7:264–276. https://doi.org/10.1093/mp/sst168

    Article  PubMed  CAS  Google Scholar 

  38. Shen J, Xing T, Yuan H, Liu Z, Jin Z, Zhang L, Pei Y (2013) Hydrogen sulfide improves drought tolerance in Arabidopsis Thaliana by microRNA expressions. PLoS One 8:e77047. https://doi.org/10.1371/journal.pone.0077047.

  39. Shen J, Zhang J, Zhou M, Zhou H, Cui B, Gotor C, Romero L, Fu L, Yang J, Foyer C, Pan Q, Shen W, Xie Y (2020) Persulfidation-based modification of cysteine desulfhydrase and the NADPH oxidase RBOHD controls guard cell abscisic acid signaling. Plant cell [online now] 32:1000–1017. https://doi.org/10.1105/tpc.19.00826

    Article  CAS  Google Scholar 

  40. Tan M (2010) Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. Plant Physio Biochem 48:21–26. https://doi.org/10.1016/j.plaphy.2009.10.005

    Article  CAS  Google Scholar 

  41. Tian B, Qiao Z, Zhang L, Li H, Pei Y (2016) Hydrogen sulfide and proline cooperate to alleviate cadmium stress in foxtail millet seedings. Plant Physiol Biochem 109:293–299. https://doi.org/10.1016/j.plaphy.2016.10.006

    Article  PubMed  CAS  Google Scholar 

  42. Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539. https://doi.org/10.1111/j.1365-313X.2005.02593.x

    Article  PubMed  CAS  Google Scholar 

  43. Wada Y (2005) Physiological functions of plant DNA methyltransferases. Plant Biotechnol 22:71–80. https://doi.org/10.5511/plantbiotechnology.22.71

    Article  CAS  Google Scholar 

  44. Wang R (2012) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92:791–896. https://doi.org/10.1152/physrev.00017.2011

    Article  PubMed  CAS  Google Scholar 

  45. Wang W, Pan Y, Zhao X, Dwivedi D, Zhu L, Ali J, Fu B, Li Z (2011) Drought induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J Exp Bot 62:1951–1960. https://doi.org/10.1093/jxb/erq391

    Article  PubMed  CAS  Google Scholar 

  46. Wang L, Wan R, Shi Y, Xue S (2016) Hydrogen sulfide activates S-type anion channel via OST1 and Ca2+ modules. Mol Plant 9:489–491. https://doi.org/10.1016/j.molp.2015.11.010

    Article  PubMed  CAS  Google Scholar 

  47. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa A, Mu T, Zhang S, Snyder S, Wang R (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322:587–590. https://doi.org/10.1126/science.1162667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Zhang J, Creelman R, Zhu J (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621. https://doi.org/10.1104/pp.104.040295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Zhang M, Kimatu JN, Xu K, Liu B (2010) DNA cytosine methylation in plant development. J Genet Genomics 37:1–12. https://doi.org/10.1016/S1673-8527(09)60020-5

  50. Zhang H, Lang Z, Zhu J (2018) Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol 19:489–506. https://doi.org/10.1038/s41580-018-0016-z

    Article  PubMed  CAS  Google Scholar 

  51. Zhong S, Fei Z, Chen Y, Zheng Y, Huang M, Vrebalov J, McQuinn R, Gapper N, Liu B, Xiang J, Shao Y, Giovannoni JJ (2013) Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat Biotechnol 31:154–159. https://doi.org/10.1038/nbt.2462

    Article  PubMed  CAS  Google Scholar 

  52. Zhu J (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324. https://doi.org/10.1016/j.cell.2016.08.029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references


This work was funded by a grant from the National Natural Science Foundation of China (No. 31701342 to Hao X, No. 31671605 to Pei Y and 31672140 to Jin Z), University Science and Technology Innovation Project in Shanxi Province (No. 2017168 to Hao X) and Higher Education Institution Project of Shanxi Province: Ecological Remediation of Soil Pollution Disciplines Group (No. 20181401).

Author information



Corresponding author

Correspondence to Yanxi Pei.

Ethics declarations

Conflict of interests

The authors declared no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Ian Dodd.

Electronic supplementary material


(PNG 1813 kb)


(PNG 662 kb)

High Resolution Image (TIF 7269 kb)

High Resolution Image (TIF 2661 kb)


(TIF 1529 kb)


(TIF 1614 kb)


(DOCX 2681 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hao, X., Jin, Z., Wang, Z. et al. Hydrogen sulfide mediates DNA methylation to enhance osmotic stress tolerance in Setaria italica L.. Plant Soil (2020). https://doi.org/10.1007/s11104-020-04590-5

Download citation


  • Hydrogen sulfide
  • DNA methylation
  • Osmotic stress
  • Foxtail millet (Setaria italica L.)