Soil and climate affect foliar silicification patterns and silica-cellulose balance in sugarcane (Saccharum officinarum)

Abstract

Aims

Silicon (Si) has beneficial effects in a variety of plant species and environments. Soil and climate affect silica accumulation in given plant species, but their roles on foliar silicification patterns and balance between silica and C-rich biopolymers as structural components is poorly known.

Methods

We studied silica deposition in situ in sugarcane leaves collected in three tropical environments differing in soil and climate. Plant silica deposits were physically extracted from leaves through wet digestion. Leaves were observed and mapped for Si by ESEM-EDX. The C-rich biopolymers in leaves were determined by the Van Soest method.

Results

Silicon accumulation in the leaves was related to bioavailable Si in soil and plant transpiration. Epidermal silica deposits were either limited to silica cells as dumbbell-shaped phytoliths, or expanded to long and short cells arranged in prominent veins fully silicified, depending on whether the leaf Si concentration was lowest or highest. The size of silica deposits increased with increasing leaf Si through an increasing number of conjoined silicified cells. Leaf ash-free cellulose and Si concentrations were negatively correlated.

Conclusions

Soil and climate impact markedly the magnitude of foliar silicification, with possibly significant impact on mechanical properties and Si-related plant functions. Environmental conditions further impact the counterbalance between silica and cellulose as leaf structural components via different levels of Si accumulation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abou-El-Enin OH, Fadel JG, MacKill DJ (1999) Differences in chemical composition and fibre digestion of rice straw with, and without, anhydrous ammonia from 53 rice varieties. Anim Feed Sci Technol 79:129–136. https://doi.org/10.1016/S0377-8401(98)00271-5

    CAS  Article  Google Scholar 

  2. Adrees M, Ali S, Rizwan M et al (2015) Ecotoxicology and environmental safety mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants : a review. Ecotoxicol Environ Saf 119:186–197. https://doi.org/10.1016/j.ecoenv.2015.05.011

    CAS  Article  PubMed  Google Scholar 

  3. Agbagla-Dohnani A, Nozière P, Clément G, Doreau M (2001) In sacco degradability, chemical and morphological composition of 15 varieties of European rice straw. Anim Feed Sci Technol 94:15–27. https://doi.org/10.1016/S0377-8401(01)00296-6

    Article  Google Scholar 

  4. Alabouvette C (1999) Fusarium wilt suppressive soils: an example of disease-suppressive soils. Australas Plant Pathol 28:57–64

    Article  Google Scholar 

  5. Alabouvette C, Olivain C, Steinberg C (2006) Biological control of plant diseases: the European situation. Eur J Plant Pathol 114:329–341. https://doi.org/10.1007/s10658-005-0233-0

    Article  Google Scholar 

  6. Alexandre A, Webb E, Landais A et al (2019) Effects of grass leaf anatomy, development and light/dark alternation on the triple oxygen isotope signature of leaf water and phytoliths: insights for a new proxy of continental atmospheric humidity. Biogeosci Discuss 16:4613–4625. https://doi.org/10.5194/bg-2019-73

    Article  Google Scholar 

  7. Ando H, Kakuda KI, Fujii H et al (2002) Growth and canopy structure of rice plants grown under field conditions as affected by si application. Soil Sci Plant Nutr 48:429–432. https://doi.org/10.1080/00380768.2002.10409221

    CAS  Article  Google Scholar 

  8. Bauer P, Elbaum R, Weiss IM (2011) Calcium and silicon mineralization in land plants: transport, structure and function. Plant Sci 180:746–756. https://doi.org/10.1016/j.plantsci.2011.01.019

    CAS  Article  PubMed  Google Scholar 

  9. Bonilla PS (2001) Variation in the cellulose, lignin and silica contents of various parts of difference rice (Oryza sativa L.) cultivars. Philipp Agric Sci 84:126–137. https://doi.org/10.1055/s-2004-815600

    Article  Google Scholar 

  10. Boudon G, Dagain J, Semet MP, Westercamp D (1987) Carte géologique 1: 20 000 du massif volcanique de la Soufrière (Département de la Guadeloupe, petites Antilles). BRGM, Paris

    Google Scholar 

  11. Cai K, Gao D, Luo S et al (2008) Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease. Physiol Plant 134:324–333. https://doi.org/10.1111/j.1399-3054.2008.01140.x

    CAS  Article  PubMed  Google Scholar 

  12. Chadwick OA, Gavenda RT, Kelly EF et al (2003) The impact of climate on the biogeochemical functioning of volcanic soils. Chem Geol 202:195–223. https://doi.org/10.1016/j.chemgeo.2002.09.001

    CAS  Article  Google Scholar 

  13. Chao TT, Sanzolone RF (1992) Decomposition techniques. J Geochem Explor 44:65–106

    CAS  Article  Google Scholar 

  14. Churchman GJ, Lowe D (2012) Alteration, formation, and occurrence of minerals in soils. Handb Soil Sci Prop Process 1:20–72. https://doi.org/10.1201/b11267-24

    Article  Google Scholar 

  15. Colmet-Daage F, Lagache P (1965) Caratéristiques de quelques groupes de sols dérivés de roches volcaniques aux antilles françaises. Cah ORSTOM Série Pédologie 3:91–121

    Google Scholar 

  16. Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. American Phytopathological Society, St Paul, Minnesota, USA

  17. Cooke J, Leishman MR (2012) Tradeoffs between foliar silicon and carbon-based defences: evidence from vegetation communities of contrasting soil types. Oikos 121:2052–2060. https://doi.org/10.1111/j.1600-0706.2012.20057.x

    Article  Google Scholar 

  18. Cooke J, Leishman MR (2016) Consistent alleviation of abiotic stress with silicon addition: a meta-analysis. Funct Ecol 30:1340–1357. https://doi.org/10.1111/1365-2435.12713

    Article  Google Scholar 

  19. Cooke J, DeGabriel JL, Hartley SE (2016) The functional ecology of plant silicon: geoscience to genes. Funct Ecol 30:1270–1276. https://doi.org/10.1111/1365-2435.12711

    Article  Google Scholar 

  20. Corbineau R, Reyerson PE, Alexandre A, Santos GM (2013) Towards producing pure phytolith concentrates from plants that are suitable for carbon isotopic analysis. Rev Palaeobot Palynol 197:179–185. https://doi.org/10.1016/j.revpalbo.2013.06.001

    Article  Google Scholar 

  21. Cornelis J-T, Delvaux B (2016) Soil processes drive the biological silicon feedback loop. Funct Ecol 30:1298–1310. https://doi.org/10.1111/1365-2435.12704

    Article  Google Scholar 

  22. Coskun D, Deshmukh R, Sonah H et al (2019) The controversies of silicon’s role in plant biology. New Phytol 221:67–85. https://doi.org/10.1111/nph.15343

    Article  PubMed  Google Scholar 

  23. de Camargo MS, Amorim L, Gomes Junior AR (2013) Silicon fertilisation decreases brown rust incidence in sugarcane. Crop Prot 53:72–79. https://doi.org/10.1016/j.cropro.2013.06.006

    CAS  Article  Google Scholar 

  24. de Tombeur F, Turner BL, Laliberté E et al (2020) Silicon dynamics during 2 million years of soil development in a coastal dune chronosequence under a Mediterranean climate. Ecosystems. https://doi.org/10.1007/s10021-020-00493-9

  25. Deshmukh R, Bélanger RR (2016) Molecular evolution of aquaporins and silicon influx in plants. Funct Ecol 30:1277–1285. https://doi.org/10.1111/1365-2435.12570

    Article  Google Scholar 

  26. Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci U S A 91:11–17. https://doi.org/10.1073/pnas.91.1.11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Epstein E (1999) Silicon. Annu RevPlant Physiol Plant Mol Biol 50:641–664

    CAS  Article  Google Scholar 

  28. Epstein E (2009) Silicon: its manifold roles in plants. Ann Appl Biol 155:155–160. https://doi.org/10.1111/j.1744-7348.2009.00343.x

    CAS  Article  Google Scholar 

  29. Euliss KW, Dorsey BL, Benke KC et al (2005) The use of plant tissue silica content for estimating transpiration. Ecol Eng 25:343–348. https://doi.org/10.1016/j.ecoleng.2005.06.003

    Article  Google Scholar 

  30. Exley C (2015) A possible mechanism of biological silicification in plants. Front Plant Sci 6:1–7. https://doi.org/10.3389/fpls.2015.00853

    Article  Google Scholar 

  31. Fauteux F, Rémus-Borel W, Menzies JG, Bélanger RR (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett 249:1–6. https://doi.org/10.1016/j.femsle.2005.06.034

    CAS  Article  PubMed  Google Scholar 

  32. Fauteux F, Chain F, Belzile F et al (2006) The protective role of Si in the Arabidopsis-powdery mildew pathosystem. Proc Natl Acad Sci 103:17554–17559

    CAS  Article  Google Scholar 

  33. Fraysse F, Pokrovsky OS, Schott J, Meunier JD (2009) Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chem Geol 258:197–206. https://doi.org/10.1016/j.chemgeo.2008.10.003

    CAS  Article  Google Scholar 

  34. Frew A, Powell JR, Sallam N et al (2016) Trade-offs between silicon and phenolic defenses may explain enhanced performance of root herbivores on phenolic-rich plants. J Chem Ecol 42:768–771. https://doi.org/10.1007/s10886-016-0734-7

    CAS  Article  PubMed  Google Scholar 

  35. Frew A, Powell JR, Allsopp PG et al (2017a) Arbuscular mycorrhizal fungi promote silicon accumulation in plant roots, reducing the impacts of root herbivory. Plant Soil 419:423–433. https://doi.org/10.1007/s11104-017-3357-z

    CAS  Article  Google Scholar 

  36. Frew A, Powell JR, Hiltpold I et al (2017b) Host plant colonisation by arbuscular mycorrhizal fungi stimulates immune function whereas high root silicon concentrations diminish growth in a soil-dwelling herbivore. Soil Biol Biochem 112:117–126

    CAS  Article  Google Scholar 

  37. Gbongue LR, Lalaymia I, Zeze A et al (2019) Increased silicon acquisition in bananas colonized by Rhizophagus irregularis MUCL 41833 reduces the incidence of Pseudocercospora fijiensis. Front Plant Sci 9:1–11. https://doi.org/10.3389/fpls.2018.01977

    Article  Google Scholar 

  38. Godin B, Agneessens R, Gofflot S et al (2011) Revue bibliographique Sur les méthodes analyse des polysaccharides structuraux des biomasses lignocellulosiques. Biotechnol Agron Soc Environ 15:165–182

    Google Scholar 

  39. Godin B, Agneessens R, Gerin P, Delcarte J (2014) Structural carbohydrates in plant biomasses: correlations between the detergent fiber and the dietary fiber methods. J Agric Food Chem 62:5609–5616

    CAS  Article  Google Scholar 

  40. Godin B, Agneessens R, Gerin P, Delcarte J (2015) Lignin in plant biomasses: comparative metrological assessment of the detergent fiber and the insoluble dietary fiber methods. Cellulose 22:2235–2340

    Article  Google Scholar 

  41. Guerriero G, Hausman J-F, Legay S (2016) Silicon and the plant extracellular matrix. Front Plant Sci 7:1–8. https://doi.org/10.1080/10508422.2015.1029047

    Article  Google Scholar 

  42. Guerriero G, Law C, Stokes I et al (2018) Rough and tough. How does silicic acid protect horsetail from fungal infection? J Trace Elem Med Biol 47:45–52. https://doi.org/10.1016/j.jtemb.2018.01.015

    CAS  Article  PubMed  Google Scholar 

  43. Hartley SE, Fitt RN, McLarnon EL, Wade RN (2015) Defending the leaf surface: intra- and inter-specific differences in silicon deposition in grasses in response to damage and silicon supply. Front Plant Sci 6:35. https://doi.org/10.3389/fpls.2015.00035

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hasan S, Shimojo M, Goto I (1993) Chemical components influencing lodging resistance of rice plant and its straw digestibility in vitro. Asian Australas J Anim Sci 6:41–44

    Article  Google Scholar 

  45. Haymsom M, Chapman L (1975) Some aspects of the calcium silicate trials at Mackay. Proc Queensl Soc Sugar Cane Technol 42:117–122

    Google Scholar 

  46. Henriet C, Draye X, Oppitz I et al (2006) Effects, distribution and uptake of silicon in banana (Musa spp.) under controlled conditions. Plant Soil 287:359–374. https://doi.org/10.1007/s11104-006-9085-4

    CAS  Article  Google Scholar 

  47. Henriet C, Bodarwé L, Dorel M et al (2008a) Leaf silicon content in banana (Musa spp.) reveals the weathering stage of volcanic ash soils in Guadeloupe. Plant Soil 313:71–82. https://doi.org/10.1007/s11104-008-9680-7

    CAS  Article  Google Scholar 

  48. Henriet C, De Jaeger N, Dorel M et al (2008b) The reserve of weatherable primary silicates impacts the accumulation of biogenic silicon in volcanic ash soils. Biogeochemistry 90:209–223. https://doi.org/10.1007/s10533-008-9245-0

    CAS  Article  Google Scholar 

  49. Herbillon A (1986) Chemical estimation of weatherable minerals present in the diagnostic horizon of low activity clay soils. Proc 8th Int Classif Work shop Classif Charact Util Ultisols Part I EMBRAPA, Rio Janeiro, 39–48

  50. Hodson MJ (2019) The relative importance of cell wall and lumen phytoliths in carbon sequestration in soil: a hypothesis. Front Earth Sci 7:167. https://doi.org/10.3389/feart.2019.00167

    Article  Google Scholar 

  51. Hodson MJ, Sangster AG, Parry DW (1985) An ultrastructural study on the developmental phases and silicification of the glumes of Phalaris canariensis L. Ann Bot 55:649–665. https://doi.org/10.1098/rspb.1984.0074

    Article  Google Scholar 

  52. Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot 96:1027–1046. https://doi.org/10.1093/aob/mci255

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Issaharou-Matchi I, Barboni D, Meunier JD et al (2016) Intraspecific biogenic silica variations in the grass species Pennisetum pedicellatum along an evapotranspiration gradient in South Niger. Flora Morphol Distrib Funct Ecol Plants 220:84–93. https://doi.org/10.1016/j.flora.2016.02.008

    Article  Google Scholar 

  54. IUSS (2014) World reference base for soil classification 2014. Food Agric Organ United Nations, Rome

    Google Scholar 

  55. Jones LHP, Handreck KA (1967) Silica in soils, plants, and animals. Adv Agron 19:107–149. https://doi.org/10.1016/S0065-2113(08)60734-8

    CAS  Article  Google Scholar 

  56. Kang J, Zhao W, Zhu X (2016) Silicon improves photosynthesis and strengthens enzyme activities in the C3 succulent xerophyte Zygophyllum xanthoxylum under drought stress. J Plant Physiol 199:76–86. https://doi.org/10.1016/j.jplph.2016.05.009

    CAS  Article  PubMed  Google Scholar 

  57. Katz O (2019) Silicon content is a plant functional trait: implications in a changing world. Flora 254:88–94. https://doi.org/10.1016/j.flora.2018.08.007

    Article  Google Scholar 

  58. Kaufman PB, Dayanandan P, Franklin CI (1985) Structure and function of silica bodies in the epidermal system of grass shoots. Ann Bot 55:487–507

    Article  Google Scholar 

  59. Keeping MG, Meyer JH (2006) Silicon-mediated resistance of sugarcane to Eldana saccharina Walker (Lepidoptera: Pyralidae): effects of silicon source and cultivar. J Appl Entomol 130:410–420. https://doi.org/10.1111/j.1439-0418.2006.01081.x

    CAS  Article  Google Scholar 

  60. Keeping MG, Kvedaras OL, Bruton AG (2009) Epidermal silicon in sugarcane: cultivar differences and role in resistance to sugarcane borer Eldana saccharina. Environ Exp Bot 66:54–60. https://doi.org/10.1016/j.envexpbot.2008.12.012

    CAS  Article  Google Scholar 

  61. Keeping MG, Meyer JH, Sewpersad C (2013) Soil silicon amendments increase resistance of sugarcane to stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae) under field conditions. Plant Soil 363:297–318. https://doi.org/10.1007/s11104-012-1325-1

    CAS  Article  Google Scholar 

  62. Kelly EF (1990) Methods for extracting opal phytoliths from soil and plant material. In: Workshop on biotic indicators of global change, Seattle, Washington

  63. Kido N, Yokoyama R, Yamamoto T et al (2015) The matrix polysaccharide (1;3,1;4)-2- d -glucan is involved in silicon-dependent strengthening of rice cell wall. Plant Cell Physiol 56:268–276. https://doi.org/10.1093/pcp/pcu162

    CAS  Article  PubMed  Google Scholar 

  64. Kitajima K, Llorens A-M, Stefanescu C et al (2012) How cellulose-based leaf toughness and lamina density contribute to long leaf lifespans of shade-tolerant species. New Phytol 195:640–652

    Article  Google Scholar 

  65. Kitajima K, Wright SJ, Westbrook JW (2016) Leaf cellulose density as the key determinant of inter- and intra-specific variation in leaf fracture toughness in a species-rich tropical forest. Interface Focus 6:20150100. https://doi.org/10.1098/rsfs.2015.0100

    Article  PubMed  PubMed Central  Google Scholar 

  66. Klotzbücher T, Marxen A, Vetterlein D et al (2015) Plant-available silicon in paddy soils as a key factor for sustainable rice production in Southeast Asia. Basic Appl Ecol 16:665–673. https://doi.org/10.1016/j.baae.2014.08.002

    Article  Google Scholar 

  67. Klotzbücher T, Klotzbücher A, Kaiser K et al (2018) Variable silicon accumulation in plants affects terrestrial carbon cycling by controlling lignin synthesis. Glob Chang Biol 24:183–189. https://doi.org/10.1111/gcb.13845

    Article  Google Scholar 

  68. Komorowski J-C, Boudon G, Semet M, et al (2005) Guadeloupe. In: Volcanic Hazard Atlas of The Lesser Antilles. Seismic Research Unit, Univesrity of the West Indies, pp 65–102

  69. Kumar S, Elbaum R (2018) Interplay between silica deposition and viability during the life span of sorghum silica cells. New Phytol 217:1137–1145. https://doi.org/10.1111/nph.14867

    CAS  Article  PubMed  Google Scholar 

  70. Kumar S, Milstein Y, Brami Y et al (2017a) Mechanism of silica deposition in sorghum silica cells. New Phytol 213:791–798. https://doi.org/10.1111/nph.14173

    CAS  Article  PubMed  Google Scholar 

  71. Kumar S, Soukup M, Elbaum R (2017b) Silicification in grasses: variation between different cell types. Front Plant Sci 8:438. https://doi.org/10.3389/fpls.2017.00438

    Article  PubMed  PubMed Central  Google Scholar 

  72. Law C, Exley C (2011) New insight into silica deposition in horsetail (Equisetum arvense). BMC Plant Biol 11:112. https://doi.org/10.1186/1471-2229-11-112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Leroy N, de Tombeur F, Walgraffe Y et al (2019) Silicon and plant natural defenses against insect pests : impact on plant volatile organic compounds and Cascade effects on multitrophic interactions. Plants 8:444. https://doi.org/10.3390/plants8110444

    CAS  Article  PubMed Central  Google Scholar 

  74. Li F, Zhang M, Guo K et al (2015) High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnol J 13:514–525. https://doi.org/10.1111/pbi.12276

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Li Z, Unzué-Belmonte D, Cornelis J-T et al (2019) Effects of phytolithic rice-straw biochar, soil buffering capacity and pH on silicon bioavailability. Plant Soil. https://doi.org/10.1007/s11104-019-04013-0

  76. Li Z, de Tombeur F, Vander Linden C et al (2020) Soil microaggregates store phytoliths in a sandy loam. Geoderma 360:114037. https://doi.org/10.1016/j.geoderma.2019.114037

    CAS  Article  Google Scholar 

  77. Lucas Y, Luizão FJ, Chauvel A et al (1993) The relation between biological activity of the rain forest and mineral composition of soils. Science 260:521–523. https://doi.org/10.1126/science.260.5107.521

    CAS  Article  PubMed  Google Scholar 

  78. Ma JF, Tamai K, Yamaji N et al (2006) A silicon transporter in rice. Nature 440:688–691. https://doi.org/10.1038/nature04590

    CAS  Article  PubMed  Google Scholar 

  79. Massey FP, Hartley SE (2006) Experimental demonstration of the antiherbivore effects of silica in grasses: impacts on foliage digestibility and vole growth rates. Proc R Soc B Biol Sci 273:2299–2304. https://doi.org/10.1098/rspb.2006.3586

    CAS  Article  Google Scholar 

  80. McCray JM, Rice RW, Baucum LE (2011) Calcium Silicate Recommendations for Sugarcane on Florida Organic Soils. Electron Data Inf Source (EDIS), Soil Water Sci Dep Univ Florida 1–5

  81. McNaughton SJ, Tarrants JL, McNaughton MM, Davis RD (1985) Silica as a defense against herbivory and a growth promotor in african grasses. Ecology 66:528–535

    CAS  Article  Google Scholar 

  82. Meunier JD, Colin F, Alarcon C (1999) Biogenic silica storage in soils. Geology 27:835–838. https://doi.org/10.1130/0091-7613(1999)027<0835:BSSIS>2.3.CO;2

    CAS  Article  Google Scholar 

  83. Meunier JD, Barboni D, Anwar-ul-Haq M et al (2017) Effect of phytoliths for mitigating water stress in durum wheat. New Phytol 215:229–239. https://doi.org/10.1111/nph.14554

    CAS  Article  PubMed  Google Scholar 

  84. Motomura H, Fujii T, Suzuki M (2004) Silica deposition in relation to ageing of leaf tissues in (Sasa veitchii Á re ) Rehder ( Poaceae : Bambusoideae ). Ann Bot 93:235–248. https://doi.org/10.1093/aob/mch034

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. Motomura H, Fujii T, Suzuki M (2006) Silica deposition in Abaxial epidermis before the opening of leaf blades of Pleioblastus chino (Poaceae , Bambusoideae). Ann Appl Biol 97:513–519. https://doi.org/10.1093/aob/mcl014

    CAS  Article  Google Scholar 

  86. Nakamura R, Cornélis J-T, de Tombeur F et al (2020a) Comparative analysis of borate fusion versus sodium carbonate extraction for quantification of silicon contents in plants. J Plant Res 133:271–277. https://doi.org/10.1007/s10265-019-01162-2

    CAS  Article  PubMed  Google Scholar 

  87. Nakamura R, Cornelis J, de Tombeur F et al (2020b) Diversity of silicon release rates among tropical tree species during leaf-litter decomposition. Geoderma 368. https://doi.org/10.1016/j.geoderma.2020.114288

  88. Ndayiragije S, Delvaux B (2003) Coexistence of allophane, gibbsite, kaolinite and hydroxy-Al-interlayered 2:1 clay minerals in a perudic andosol. Geoderma 117:203–214. https://doi.org/10.1016/S0016-7061(03)00123-X

    CAS  Article  Google Scholar 

  89. Neu S, Schaller J, Dudel EG (2017) Silicon availability modifies nutrient use efficiency and content, C:N:P stoichiometry, and productivity of winter wheat (Triticum aestivum L.). Sci Rep 7:40829. https://doi.org/10.1038/srep40829

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. Olsen SR, Sommers LE, Page AL (1982) Methods of soil analysis. Part 2. Chem. Microbiol. Prop. Phosphorus. Am Soc Agron Inc Soil Sci Soc Am Inc 9:403–430

    Google Scholar 

  91. Oye Anda CC, Opfergelt S, Declerck S (2016) Silicon acquisition by bananas (c.V. Grande Naine) is increased in presence of the arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833. Plant Soil 409:77–85. https://doi.org/10.1007/s11104-016-2954-6

    CAS  Article  Google Scholar 

  92. Perry CC, Fraser MA (1991) Silica deposition and ultrastructure in the cell wall of Equisetum arvense: the importance of cell wall structures and flow control in biosilicification? Philos Trans R Soc B Biol Sci 334:149–157. https://doi.org/10.1098/rstb.1991.0104

    Article  Google Scholar 

  93. Perry CC, Keeling-Tucker T (2000) Biosilicification: the role of the organic matrix in structure control. J Biol Inorg Chem 5:537–550. https://doi.org/10.1007/s007750000130

    CAS  Article  PubMed  Google Scholar 

  94. Quigley KM, Anderson TM (2014) Leaf silica concentration in Serengeti grasses increases with watering but not clipping: insight from a common garden study and literature review. Front Plant Sci 5:568

    Article  Google Scholar 

  95. Quigley KM, Donati GL, Anderson TM (2016) Variation in the soil “silicon landscape” explains plant silica accumulation across environmental gradients in Serengeti. Plant Soil 410:217–229. https://doi.org/10.1007/s11104-016-3000-4

    CAS  Article  Google Scholar 

  96. Rai D, Kittrick JA (1989) Mineral equilibria and the soil system. In: America SSS of (ed) Minerals in Soil Environments. Madison, USA, pp 161–198

  97. Raven JA (1983) The transport and function of silicon in plants. Biol Rev 58:179–207

    CAS  Article  Google Scholar 

  98. Rosen AM, Weiner S (1994) Identifying ancient irrigation: a new method using opaline phytoliths from emmer wheat. J Archaeol Sci 21:125–132

    Article  Google Scholar 

  99. Sangster AG, Hodson MJ, Tubb HJ (2001) Silicon deposition in higher plants. In: Silicon in Agriculture, Elsevier. The Netherlands, pp 85–113

  100. Sauer D, Saccone L, Conley DJ et al (2006) Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry 80:89–108. https://doi.org/10.1007/s10533-005-5879-3

    CAS  Article  Google Scholar 

  101. Schaller J, Brackhage C, Dudel EG (2012) Silicon availability changes structural carbon ratio and phenol content of grasses. Environ Exp Bot 77:283–287. https://doi.org/10.1016/j.envexpbot.2011.12.009

    CAS  Article  Google Scholar 

  102. Schaller J, Heimes R, Ma JF et al (2019) Silicon accumulation in rice plant aboveground biomass affects leaf carbon quality. Plant Soil 444:399–407. https://doi.org/10.1007/s11104-019-04267-8

    CAS  Article  Google Scholar 

  103. Schlatter D, Kinkel L, Thomashow L et al (2017) Disease suppressive soils: new insights from the soil microbiome. Phytopathology 107:1284–1297. https://doi.org/10.1094/PHYTO-03-17-0111-RVW

    Article  PubMed  Google Scholar 

  104. Schoelynck J, Struyf E (2016) Silicon in aquatic vegetation. Funct Ecol 30:1323–1330. https://doi.org/10.1111/1365-2435.12614

    Article  Google Scholar 

  105. Schoelynck J, Bal K, Backx H et al (2010) Silica uptake in aquatic and wetland macrophytes: a strategic choice between silica, lignin and cellulose? New Phytol 186:385–391. https://doi.org/10.1111/j.1469-8137.2009.03176.x

    CAS  Article  PubMed  Google Scholar 

  106. Shen HS, Ni D, Sundstøl F (1998) Studies on untreated and urea-treated rice straw from three cultivation seasons: 1. Physical and chemical measurements in straw and straw fractions. Anim Feed Sci Technol 73:243–261. https://doi.org/10.1016/S0377-8401(98)00157-6

    CAS  Article  Google Scholar 

  107. Simpson KJ, Wade RN, Rees M et al (2017) Still armed after domestication? Impacts of domestication and agronomic selection on silicon defences in cereals. Funct Ecol 31:2108–2117. https://doi.org/10.1111/1365-2435.12935

    Article  Google Scholar 

  108. Sommer M, Jochheim H, Höhn A et al (2013) Si cycling in a forest biogeosystem-the importance of transient state biogenic Si pools. Biogeosciences 10:4991–5007. https://doi.org/10.5194/bg-10-4991-2013

    Article  Google Scholar 

  109. Soukup M, Martinka M, Bosnić D et al (2017) Formation of silica aggregates in sorghum root endodermis is predetermined by cell wall architecture and development. Ann Bot 120:739–753. https://doi.org/10.1093/aob/mcx060

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  110. Stotzky G (1986) Influence of soil minerals colloids on metabolic processes, growth, adhesion, and ecology of microbes and viruses. In: Huang PM, Schnitzer M (eds) Interactions of soil minerals with natural organisms and microbes. Madison, Wisconsin, pp 305–428

    Google Scholar 

  111. Stotzky G, Martin T (1963) Soil mineralogy in relation to the spread of Fusarium wilt of banana in Central America. Plant Soil 18:317–337

    CAS  Article  Google Scholar 

  112. Suzuki S, Ma JF, Yamamoto N et al (2012) Silicon deficiency promotes lignin accumulation in rice. Plant Biotechnol 29:391–394. https://doi.org/10.5511/plantbiotechnology.12.0416a

    CAS  Article  Google Scholar 

  113. Tubana BS, Babu T, Datnoff LE (2016) A review of silicon in soils and plants and its role in US agriculture. Soil Sci 181:1. https://doi.org/10.1097/SS.0000000000000179

    CAS  Article  Google Scholar 

  114. USDA’s Soil Survey Laboratory Staff (2017) Soil survey manual. USDA Handbook 18. Government Printing Office, Washinton, D. C., USDA Handb. Washington, D. C

  115. Van Soest PJ (1973) Collaborative study of acid-detergent fiber and lignin. J AOAC 56:781–784

    Article  Google Scholar 

  116. Van Soest PJ, Wine R (1967) Use of detergents in the analysis of fibrous feeds. IV. Determiantion of plant cell well constituants. J AOAC 50:50–55

    Article  Google Scholar 

  117. Vander Linden C, Delvaux B (2019) The weathering stage of tropical soils affects the soil-plant cycle of silicon, but depending on land use. Geoderma 351:209–220. https://doi.org/10.1016/j.geoderma.2019.05.033

    CAS  Article  Google Scholar 

  118. Yamamoto T, Nakamura A, Iwai H et al (2012) Effect of silicon deficiency on secondary cell wall synthesis in rice leaf. J Plant Res 125:771–779. https://doi.org/10.1007/s10265-012-0489-3

    CAS  Article  PubMed  Google Scholar 

  119. Yoshida S, Onishi Y, Kitagishi K (1959) The chemical nature of silicon in rice plant. Soil Sci Plant Nutr 5:23–27. https://doi.org/10.1080/00380768.1959.10430890

    Article  Google Scholar 

Download references

Acknowledgements

We express our gratitude to Dr. Marc Dorel and the staff of the CIRAD research station of Neuchâteau, Guadeloupe, for their assistance in field and laboratory work. We thank Brieuc Hardy and Alexis Durviaux for their field assistance, Anne Iserentant for her help in the UCLouvain soil laboratory, Richard Agneessens for the biochemical analysis in the CRA-W laboratory, and Meteo France for access to meteorological data. We are grateful to the Center for Applied Research and Education in Microscopy (CAREM) (ULiege) for providing access to electron microscopy. None of the authors declare conflicts of interest.

Author information

Affiliations

Authors

Contributions

FdT, J-TC, BD and CVL planned and designed the research. FdT, CVL and BD conducted fieldwork. FdT, CVL, BG and PC performed experiments. All the authors analysed data and wrote the manuscript.

Corresponding author

Correspondence to Felix de Tombeur.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Yong Chao Liang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Tombeur, F., Vander Linden, C., Cornélis, J. et al. Soil and climate affect foliar silicification patterns and silica-cellulose balance in sugarcane (Saccharum officinarum). Plant Soil (2020). https://doi.org/10.1007/s11104-020-04588-z

Download citation

Keywords

  • Biomineralization
  • Biosilicification
  • Cellulose
  • Phytoliths
  • Saccharum officinarum (sugarcane)
  • Silicon