Antimony-oxidizing bacteria alleviate Sb stress in Arabidopsis by attenuating Sb toxicity and reducing Sb uptake

Abstract

Aims

Antimony (Sb)-oxidizing bacteria play an important role in Sb biogeochemical cycle in soil, but the benefits of microbial oxidation for plants have not been well documented. The aim of this study was to explore the contribution of Sb(III)-oxidizing bacteria to alleviate the Sb toxicity in plants.

Methods

The plant growth-promoting (PGP) characteristics of Sb(III)-oxidizing bacterium Bacillus sp. S3 and the effects of bacterial inoculation on Arabidopsis plants were evaluated under controlled and Sb stressed conditions.

Results

Indole acetic acid (IAA) production and 1-aminocyclopropane-1-carboxylate-deaminase (ACC-deaminase) activity were the only two PGP strategies that Bacillus sp. S3 possessed, despite the production level of IAA and the activity of ACC deaminase sharply decreased under Sb stress. Bacillus sp. S3 inoculation significantly increased the plant biomass and chlorophyll content, alleviated the peroxidation of membrane lipids, decreased the activities of the antioxidant enzymes, and reduced the transcription of Sb transporters and reactive oxygen species (ROS)-related enzymes in Arabidopsis. Noteworthily, inoculation of Bacillus sp. S3 not only significantly decreased the Sb accumulation but also reduced the percentage of Sb(III) of total Sb in Arabidopsis.

Conclusions

This study indicates that the Sb(III)-oxidizing strain of Bacillus sp. S3 is a promising inoculant used for bacteria-assisted phytoremediation on Sb-contaminated sites.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91:869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075

    CAS  Article  PubMed  Google Scholar 

  2. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15. https://doi.org/10.1104/pp.24.1.1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Bakker A, Shippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth-stimulation. Soil Biol Biochem 19:451–457

    CAS  Article  Google Scholar 

  4. Bienert GP, Thorsen M, Schussler MD, Nilsson HR, Wagner A, Tamas MJ, Jahn TP (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 6:26. https://doi.org/10.1186/1741-7007-6-26

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Bilal S, Khan AL, Shahzad R, Kim YH, Imran M, Khan MJ, Al-Harrasi A, Kim TH, Lee IJ (2018) Mechanisms of Cr(VI) resistance by endophytic Sphingomonas sp. LK11 and its Cr(VI) phytotoxic mitigating effects in soybean (Glycine max L.). Ecotoxicol Environ Saf 164:648–658. https://doi.org/10.1016/j.ecoenv.2018.08.043

    CAS  Article  PubMed  Google Scholar 

  6. Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils-to mobilize or to immobilize? J Hazard Mater 266:141–166. https://doi.org/10.1016/j.jhazmat.2013.12.018

    CAS  Article  PubMed  Google Scholar 

  7. Brick J, Bostock R, Silverstone S (1991) Rapid in situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane. Appl Environ Microbiol 57:535–538

    Article  Google Scholar 

  8. Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207. https://doi.org/10.1006/eesa.1999.1860

    CAS  Article  PubMed  Google Scholar 

  9. Cai F, Ren J, Tao S, Wang X (2016) Uptake, translocation and transformation of antimony in rice (Oryza sativa L.) seedlings. Environ Pollut 209:169–176. https://doi.org/10.1016/j.envpol.2015.11.033

    CAS  Article  PubMed  Google Scholar 

  10. Carlos MJ, Stefani PY, Janette AM, Melani MS, Gabriela PO (2016) Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria. Microbiol Res 188–189:53–61. https://doi.org/10.1016/j.micres.2016.05.001

    CAS  Article  PubMed  Google Scholar 

  11. Chai LY, Mubarak H, Yang ZH, Yong W, Tang CJ, Mirza N (2016) Growth, photosynthesis, and defense mechanism of antimony (Sb)-contaminated Boehmeria nivea L. Environ Sci Pollut Res Int 23:7470–7481. https://doi.org/10.1007/s11356-015-5987-0

    CAS  Article  PubMed  Google Scholar 

  12. Chatterjee S, Sau GB, Mukherjee SK (2009) Plant growth promotion by a hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World J Microb Biot 25:1829–1836. https://doi.org/10.1007/s11274-009-0084-5

    CAS  Article  Google Scholar 

  13. Chen Y, Chao Y, Li Y, Lin Q, Bai J, Tang L, Wang S, Ying R, Qiu R (2016) Survival strategies of the plant-associated bacterium Enterobacter sp. strain EG16 under cadmium stress. Appl Environ Microbiol 82:1734–1744. https://doi.org/10.1128/AEM.03689-15

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Chen YM, Yang WJ, Chao YQ, Wang SZ, Tang YT, Qiu RL (2017) Metal-tolerant Enterobacter sp strain EG16 enhanced phytoremediation using Hibiscus cannabinus via siderophore-mediated plant growth promotion under metal contamination. Plant Soil 413:203–216. https://doi.org/10.1007/s11104-016-3091-y

    CAS  Article  Google Scholar 

  15. Corsini A, Colombo M, Gardana C, Zecchin S, Simonetti P, Cavalca L (2018) Characterization of As(III) oxidizing Achromobacter sp strain N2: effects on arsenic toxicity and translocation in rice. Ann Microbiol 68:295–304. https://doi.org/10.1007/s13213-018-1338-y

    CAS  Article  Google Scholar 

  16. Das S, Jean JS, Chou ML, Rathod J, Liu CC (2016) Arsenite-oxidizing bacteria exhibiting plant growth promoting traits isolated from the rhizosphere of Oryza sativa L.: Implications for mitigation of arsenic contamination in paddies. J Hazard Mater 302:10–18. https://doi.org/10.1016/j.jhazmat.2015.09.044

    CAS  Article  PubMed  Google Scholar 

  17. Di Gregorio S, Lampis S, Vallini G (2005) Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. Environ Int 31:233–241. https://doi.org/10.1016/j.envint.2004.09.021

    CAS  Article  PubMed  Google Scholar 

  18. Dye DW (1962) The inadequacy of the usual determinative tests for identification of Xanthomonas spp. New Zeal J Bot 5:393–416

  19. Etesami H (2018) Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects. Ecotoxicol Environ Saf 147:175–191. https://doi.org/10.1016/j.ecoenv.2017.08.032

    CAS  Article  PubMed  Google Scholar 

  20. Etesami H, Maheshwari DK (2018) Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicol Environ Saf 156:225–246. https://doi.org/10.1016/j.ecoenv.2018.03.013

    CAS  Article  PubMed  Google Scholar 

  21. Feng RW, Wei CY, Tu SX, Wu FC, Yang LS (2009) Antimony accumulation and antioxidative responses in four fern plants. Plant Soil 317:93–101. https://doi.org/10.1007/s11104-008-9790-2

    CAS  Article  Google Scholar 

  22. Feng RW, Wei CY, Tu SX, Ding YZ, Wang RG, Guo JK (2013) The uptake and detoxification of antimony by plants: A review. Environ Exp Bot 96:28–34. https://doi.org/10.1016/j.envexpbot.2013.08.006

    CAS  Article  Google Scholar 

  23. Feng R, Lei L, Su J, Zhang R, Zhu Y, Chen W, Wang L, Wang R, Dai J, Lin Z, Li Y, Liu B, Fan Z, Liu H, Rensing C (2020) Toxicity of different forms of antimony to rice plant: Effects on root exudates, cell wall components, endogenous hormones and antioxidant system. Sci Total Environ 711:134589. https://doi.org/10.1016/j.scitotenv.2019.134589

    CAS  Article  PubMed  Google Scholar 

  24. Filella M, Belzile N, Chen YW (2002) Antimony in the environment: a review focused on natural waters I. Occurrence. Earth Sci Rev 57:125–176. https://doi.org/10.1016/S0012-8252(01)00070-8

  25. Filella M, Williams PA, Belzile N (2009) Antimony in the environment: knowns and unknowns. Environ Chem 6:95–105. https://doi.org/10.1071/En09007

    CAS  Article  Google Scholar 

  26. Firmin S, Labidi S, Fontaine J, Laruelle F, Tisserant B, Nsanganwimana F, Pourrut B, Dalpe Y, Grandmougin A, Douay F, Shirali P, Verdin A, Lounes-Hadj Sahraoui A (2015) Arbuscular mycorrhizal fungal inoculation protects Miscanthus x giganteus against trace element toxicity in a highly metal-contaminated site. Sci Total Environ 527–528:91–99. https://doi.org/10.1016/j.scitotenv.2015.04.116

    CAS  Article  PubMed  Google Scholar 

  27. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374. https://doi.org/10.1016/j.biotechadv.2010.02.001

    CAS  Article  PubMed  Google Scholar 

  28. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo) 2012:963401. https://doi.org/10.6064/2012/963401

    CAS  Article  Google Scholar 

  29. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39. https://doi.org/10.1016/j.micres.2013.09.009

    CAS  Article  PubMed  Google Scholar 

  30. Glick BR, Todorovic B, Czarny J, Cheng ZY, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242. https://doi.org/10.1080/07352680701572966

    CAS  Article  Google Scholar 

  31. Gu J, Sunahara G, Duran R, Yao J, Cui Y, Tang C, Li H, Mihucz VG (2019) Sb(III)-resistance mechanisms of a novel bacterium from non-ferrous metal tailings. Ecotoxicol Environ Saf 186:109773. https://doi.org/10.1016/j.ecoenv.2019.109773

    CAS  Article  PubMed  Google Scholar 

  32. Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598. https://doi.org/10.1007/s13213-010-0117-1

    Article  Google Scholar 

  33. He MC, Yang JR (1999) Effects of different forms of antimony on rice during the period of germination and growth and antimony concentration in rice tissue. Sci Total Environ 243/244:149–155

    CAS  Article  Google Scholar 

  34. He M, Wang N, Long X, Zhang C, Ma C, Zhong Q, Wang A, Wang Y, Pervaiz A, Shan J (2019) Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects. J Environ Sci (China) 75:14–39. https://doi.org/10.1016/j.jes.2018.05.023

    Article  Google Scholar 

  35. Herath I, Vithanage M, Bundschuh J (2017) Antimony as a global dilemma: Geochemistry, mobility, fate and transport. Environ Pollut 223:545–559. https://doi.org/10.1016/j.envpol.2017.01.057

    CAS  Article  PubMed  Google Scholar 

  36. Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611. https://doi.org/10.1007/s004250050524

    CAS  Article  Google Scholar 

  37. Honma M, Shimomura T (1987) Metabolism of 1-Aminocyclopropane-1-carboxylic Acid. Agri Biol Chem 42:1825–1831. https://doi.org/10.1080/00021369.1978.10863261

    Article  Google Scholar 

  38. Jasim B, Jimtha John C, Shimil V, Jyothis M, Radhakrishnan EK (2014) Studies on the factors modulating indole-3-acetic acid production in endophytic bacterial isolates from Piper nigrum and molecular analysis of ipdc gene. J Appl Microbiol 117:786–799. https://doi.org/10.1111/jam.12569

    CAS  Article  PubMed  Google Scholar 

  39. Ji Y, Sarret G, Schulin R, Tandy S (2017) Fate and chemical speciation of antimony (Sb) during uptake, translocation and storage by rye grass using XANES spectroscopy. Environ Pollut 231:1322–1329. https://doi.org/10.1016/j.envpol.2017.08.105

    CAS  Article  PubMed  Google Scholar 

  40. Ji Y, Vollenweider P, Lenz M, Schulin R, Tandy S (2018) Can iron plaque affect Sb(III) and Sb(V) uptake by plants under hydroponic conditions. Environ Exp Bot 148:168–175. https://doi.org/10.1016/j.envexpbot.2018.01.014

    CAS  Article  Google Scholar 

  41. Jiang CY, Sheng XF, Qian M, Wang QY (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157–164. https://doi.org/10.1016/j.chemosphere.2008.02.006

    CAS  Article  PubMed  Google Scholar 

  42. Kamiya T, Fujiwara T (2009) Arabidopsis NIP1;1 transports antimonite and determines antimonite sensitivity. Plant Cell Physiol 50:1977–1981. https://doi.org/10.1093/pcp/pcp130

    CAS  Article  PubMed  Google Scholar 

  43. Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C (2017) A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor 182:247–268. https://doi.org/10.1016/j.gexplo.2016.11.021

    CAS  Article  Google Scholar 

  44. Khan A, Kuek C, Chaudhry T, Khoo C, Hayes W (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207

    CAS  Article  Google Scholar 

  45. King J (1932) The colorimetric determination of phosphorus. Biochem J 26:292–297

    CAS  Article  Google Scholar 

  46. Kong Z, Glick BR (2017) The role of plant growth-promoting bacteria in metal phytoremediation. Adv Microb Physiol 71:97–132. https://doi.org/10.1016/bs.ampbs.2017.04.001

    Article  PubMed  Google Scholar 

  47. Lehr CR, Kashyap DR, McDermott TR (2007) New insights into microbial oxidation of antimony and arsenic. Appl Environ Microbiol 73:2386–2389. https://doi.org/10.1128/AEM.02789-06

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Leuz A-K, Johnson CA (2005) Oxidation of Sb(III) to Sb(V) by O2 and H2O2 in aqueous solutions. Geochim Cosmochim Acta 69:1165–1172. https://doi.org/10.1016/j.gca.2004.08.019

    CAS  Article  Google Scholar 

  49. Li Z, Ma Z, van der Kuijp TJ, Yuan Z, Huang L (2014) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468–469:843–853. https://doi.org/10.1016/j.scitotenv.2013.08.090

    CAS  Article  PubMed  Google Scholar 

  50. Li J, Wang Q, Oremland RS, Kulp TR, Rensing C, Wang G (2016) Microbial antimony biogeochemistry: enzymes, regulation, and related metabolic pathways. Appl Environ Microbiol 82:5482–5495. https://doi.org/10.1128/AEM.01375-16

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Li X, Yang H, Zhang C, Zeng G, Liu Y, Xu W, Wu Y, Lan S (2017) Spatial distribution and transport characteristics of heavy metals around an antimony mine area in central China. Chemosphere 170:17–24. https://doi.org/10.1016/j.chemosphere.2016.12.011

    CAS  Article  PubMed  Google Scholar 

  52. Li J, Yu H, Wu X, Shen L, Liu Y, Qiu G, Zeng W, Yu R (2018) Novel hyper antimony-oxidizing bacteria isolated from contaminated mine soils in China. Geomicrobiol J 35:713–720. https://doi.org/10.1080/01490451.2018.1454556

    CAS  Article  Google Scholar 

  53. Liu H, Weisman D, Ye YB, Cui B, Huang YH, Colon-Carmona A, Wang ZH (2009) An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana. Plant Sci 176:375–382. https://doi.org/10.1016/j.plantsci.2008.12.002

    CAS  Article  Google Scholar 

  54. Liu L, Li W, Song W, Guo M (2018) Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Sci Total Environ 633:206–219. https://doi.org/10.1016/j.scitotenv.2018.03.161

    CAS  Article  PubMed  Google Scholar 

  55. Loni PC, Wu M, Wang W, Wang H, Ma L, Liu C, Song Y, O HT (2020) Mechanism of microbial dissolution and oxidation of antimony in stibnite under ambient conditions. J Hazard Mater 385:121561. https://doi.org/10.1016/j.jhazmat.2019.121561

    CAS  Article  PubMed  Google Scholar 

  56. Lu X, Zhang Y, Liu C, Wu M, Wang H (2018) Characterization of the antimonite- and arsenite-oxidizing bacterium Bosea sp. AS-1 and its potential application in arsenic removal. J Hazard Mater 359:527–534. https://doi.org/10.1016/j.jhazmat.2018.07.112

    CAS  Article  PubMed  Google Scholar 

  57. Ma Y, Rajkumar M, Freitas H (2009) Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere 75:719–725. https://doi.org/10.1016/j.chemosphere.2009.01.056

    CAS  Article  PubMed  Google Scholar 

  58. Ma Y, Prasad MN, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258. https://doi.org/10.1016/j.biotechadv.2010.12.001

    CAS  Article  PubMed  Google Scholar 

  59. Ma Y, Oliveira RS, Freitas H, Zhang C (2016) Biochemical and molecular mchanisms of plant-microbe-metal interactions:relevance for phytoremediation. Front Plant Sci 7:918. https://doi.org/10.3389/fpls.2016.00918

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ma Y, Rajkumar M, Moreno A, Zhang C, Freitas H (2017) Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress. Chemosphere 185:75–85. https://doi.org/10.1016/j.chemosphere.2017.06.135

    CAS  Article  PubMed  Google Scholar 

  61. Ma C, He M, Zhong Q, Ouyang W, Lin C, Liu X (2019) Uptake, translocation and phytotoxicity of antimonite in wheat (Triticum aestivum). Sci Total Environ 669:421–430. https://doi.org/10.1016/j.scitotenv.2019.03.145

    CAS  Article  PubMed  Google Scholar 

  62. Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol Environ Saf 126:111–121. https://doi.org/10.1016/j.ecoenv.2015.12.023

    CAS  Article  PubMed  Google Scholar 

  63. Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481. https://doi.org/10.1146/annurev.arplant.58.032806.103946

    CAS  Article  PubMed  Google Scholar 

  64. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216. https://doi.org/10.1007/s10311-010-0297-8

    CAS  Article  Google Scholar 

  65. Nguyen VK, Lee J-U (2015) Antimony-oxidizing bacteria isolated from antimony-contaminated sediment-a phylogenetic study. Geomicrobiol J 32:50–58. https://doi.org/10.1080/01490451.2014.925009

    CAS  Article  Google Scholar 

  66. Nguyen VK, Choi W, Yu J, Lee T (2017) Microbial oxidation of antimonite and arsenite by bacteria isolated from antimony-contaminated soils. Int J Hydrogen Energ 42:27832–27842. https://doi.org/10.1016/j.ijhydene.2017.08.056

    CAS  Article  Google Scholar 

  67. Okkenhaug G, Zhu YG, Luo L, Lei M, Li X, Mulder J (2011) Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area. Environ Pollut 159:2427–2434. https://doi.org/10.1016/j.envpol.2011.06.028

    CAS  Article  PubMed  Google Scholar 

  68. Okkenhaug G, Zhu YG, He J, Li X, Luo L, Mulder J (2012) Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: differences in mechanisms controlling soil sequestration and uptake in rice. Environ Sci Technol 46:3155–3162. https://doi.org/10.1021/es2022472

    CAS  Article  PubMed  Google Scholar 

  69. Ortega A, Garrido I, Casimiro I, Espinosa F (2017) Effects of antimony on redox activities and antioxidant defence systems in sunflower (Helianthus annuus L.) plants. PLoS One 12:e0183991. https://doi.org/10.1371/journal.pone.0183991

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Oves M, Khan MS, Zaidi A (2013) Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. Eur J Soil Biol 56:72–83. https://doi.org/10.1016/j.ejsobi.2013.02.002

    CAS  Article  Google Scholar 

  71. Pan X, Zhang D, Chen X, Bao A, Li L (2011) Antimony accumulation, growth performance, antioxidant defense system and photosynthesis of Zea mays in response to antimony pollution in soil. Water Air Soil Pollut 215:517–523. https://doi.org/10.1007/s11270-010-0496-8

    CAS  Article  Google Scholar 

  72. Patterson BD, MacRae EA, Ferguson IB (1984) Estimation of hydrogen peroxide in plant extracts using Titanium(IV). Anal Biochem 139:487–492

    CAS  Article  Google Scholar 

  73. Pierart A, Shahid M, Sejalon-Delmas N, Dumat C (2015) Antimony bioavailability: knowledge and research perspectives for sustainable agricultures. J Hazard Mater 289:219–234. https://doi.org/10.1016/j.jhazmat.2015.02.011

    CAS  Article  PubMed  Google Scholar 

  74. Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol Fertil Soils 51:403–415. https://doi.org/10.1007/s00374-015-0996-1

    CAS  Article  Google Scholar 

  75. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39. https://doi.org/10.1146/annurev.arplant.56.032604.144214

    CAS  Article  PubMed  Google Scholar 

  76. Quentel F, Filella M, Elleouet C, Madec CL (2006) Sb(III) oxidation by iodate in seawater: a cautionary tale. Sci Total Environ 355:259–263. https://doi.org/10.1016/j.scitotenv.2005.01.048

    CAS  Article  PubMed  Google Scholar 

  77. Rajkumar M, Sandhya S, Prasad MN, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574. https://doi.org/10.1016/j.biotechadv.2012.04.011

    CAS  Article  PubMed  Google Scholar 

  78. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    CAS  Article  Google Scholar 

  79. Ren JH, Ma LQ, Sun HJ, Cai F, Luo J (2014) Antimony uptake, translocation and speciation in rice plants exposed to antimonite and antimonate. Sci Total Environ 475:83–89. https://doi.org/10.1016/j.scitotenv.2013.12.103

    CAS  Article  PubMed  Google Scholar 

  80. Rhee SY, Beavis W, Berardini TZ, Chen GH, Dixon D, Doyle A, Garcia-Hernandez M, Huala E, Lander G, Montoya M, Miller N, Mueller LA, Mundodi S, Reiser L, Tacklind J, Weems DC, Wu YH, Xu I, Yoo D, Yoon J, Zhang PF (2003) The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res 31:224–228. https://doi.org/10.1093/nar/gkg076

    CAS  Article  PubMed  Google Scholar 

  81. Rotkittikhun P, Kruatrachue M, Chaiyarat R, Ngernsansaruay C, Pokethitiyook P, Paijitprapaporn A, Baker AJ (2006) Uptake and accumulation of lead by plants from the Bo Ngam lead mine area in Thailand. Environ Pollut 144:681–688. https://doi.org/10.1016/j.envpol.2005.12.039

    CAS  Article  PubMed  Google Scholar 

  82. Ryu CM, Hu CH, Locy RD, Kloepper JW (2005) Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268:285–292. https://doi.org/10.1007/s11104-004-0301-9

    CAS  Article  Google Scholar 

  83. Sagar S, Dwivedi A, Yadav S, Tripathi M, Kaistha SD (2012) Hexavalent chromium reduction and plant growth promotion by Staphylococcus arlettae strain Cr11. Chemosphere 86:847–852. https://doi.org/10.1016/j.chemosphere.2011.11.031

    CAS  Article  PubMed  Google Scholar 

  84. Sangthong C, Setkit K, Prapagdee B (2016) Improvement of cadmium phytoremediation after soil inoculation with a cadmium-resistant Micrococcus sp. Environ Sci Pollut Res Int 23:756–764. https://doi.org/10.1007/s11356-015-5318-5

    CAS  Article  PubMed  Google Scholar 

  85. Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Rehim A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 171:710–721. https://doi.org/10.1016/j.chemosphere.2016.12.116

    CAS  Article  PubMed  Google Scholar 

  86. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56. https://doi.org/10.1016/0003-2697(87)90612-9

    CAS  Article  PubMed  Google Scholar 

  87. Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194. https://doi.org/10.1016/j.soilbio.2013.01.012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50. https://doi.org/10.1016/j.tplants.2008.10.007

    CAS  Article  PubMed  Google Scholar 

  89. Smichowski P (2008) Antimony in the environment as a global pollutant: a review on analytical methodologies for its determination in atmospheric aerosols. Talanta 75:2–14. https://doi.org/10.1016/j.talanta.2007.11.005

    CAS  Article  PubMed  Google Scholar 

  90. Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859. https://doi.org/10.1038/nrm2020

    CAS  Article  PubMed  Google Scholar 

  91. Tisarum R, Lessl JT, Dong X, de Oliveira LM, Rathinasabapathi B, Ma LQ (2014) Antimony uptake, efflux and speciation in arsenic hyperaccumulator Pteris vittata. Environ Pollut 186:110–114. https://doi.org/10.1016/j.envpol.2013.11.033

    CAS  Article  PubMed  Google Scholar 

  92. Tripathi M, Munot HP, Shouche Y, Meyer JM, Goel R (2005) Isolation and functional characterization of siderophore-producing lead- and cadmium-resistant Pseudomonas putida KNP9. Curr Microbiol 50:233–237. https://doi.org/10.1007/s00284-004-4459-4

    CAS  Article  PubMed  Google Scholar 

  93. Tschan M, Robinson B, Schulin R (2008) Antimony uptake by Zea mays (L.) and Helianthus annuus (L.) from nutrient solution. Environ Geochem Health 30:187–191. https://doi.org/10.1007/s10653-008-9142-4

    CAS  Article  PubMed  Google Scholar 

  94. Tschan M, Robinson BH, Nodari M, Schulin R (2009a) Antimony uptake by different plant species from nutrient solution, agar and soil. Environ Chem 6:144–152. https://doi.org/10.1071/En08103

    CAS  Article  Google Scholar 

  95. Tschan M, Robinson BH, Schulin R (2009b) Antimony in the soil - plant system - a review. Environ Chem 6:106–115. https://doi.org/10.1071/en08111

    CAS  Article  Google Scholar 

  96. Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environ Exp Bot 117:28–40. https://doi.org/10.1016/j.envexpbot.2015.05.001

    CAS  Article  Google Scholar 

  97. Vaculík M, Mrázová A, Lux A (2015) Antimony (SbIII) reduces growth, declines photosynthesis, and modifies leaf tissue anatomy in sunflower (Helianthus annuus L.). Environ Sci Pollut Res Int 22:18699–18706. https://doi.org/10.1007/s11356-015-5069-3

    CAS  Article  PubMed  Google Scholar 

  98. van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil 362:319–334. https://doi.org/10.1007/s11104-012-1287-3

    CAS  Article  Google Scholar 

  99. Wan XM, Tandy S, Hockmann K, Schulin R (2013) Changes in Sb speciation with waterlogging of shooting range soils and impacts on plant uptake. Environ Pollut 172:53–60. https://doi.org/10.1016/j.envpol.2012.08.010

    CAS  Article  PubMed  Google Scholar 

  100. Wan X, Lei M, Chen T (2016) Cost-benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Sci Total Environ 563–564:796–802. https://doi.org/10.1016/j.scitotenv.2015.12.080

    CAS  Article  PubMed  Google Scholar 

  101. Wang Q, Xiong D, Zhao P, Yu X, Tu B, Wang G (2011) Effect of applying an arsenic-resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17. J Appl Microbiol 111:1065–1074. https://doi.org/10.1111/j.1365-2672.2011.05142.x

    CAS  Article  PubMed  Google Scholar 

  102. Wang X, Li F, Yuan C, Li B, Liu T, Liu C, Du Y, Liu C (2019) The translocation of antimony in soil-rice system with comparisons to arsenic: Alleviation of their accumulation in rice by simultaneous use of Fe(II) and NO3–. Sci Total Environ 650:633–641. https://doi.org/10.1016/j.scitotenv.2018.09.054

    CAS  Article  PubMed  Google Scholar 

  103. Wu GL, Cui J, Tao L, Yang H (2010) Fluroxypyr triggers oxidative damage by producing superoxide and hydrogen peroxide in rice (Oryza sativa). Ecotoxicology 19:124–132. https://doi.org/10.1007/s10646-009-0396-0

    CAS  Article  PubMed  Google Scholar 

  104. Wu F, Fu Z, Liu B, Mo C, Chen B, Corns W, Liao H (2011) Health risk associated with dietary co-exposure to high levels of antimony and arsenic in the world’s largest antimony mine area. Sci Total Environ 409:3344–3351. https://doi.org/10.1016/j.scitotenv.2011.05.033

    CAS  Article  PubMed  Google Scholar 

  105. Wu C, Li F, Xu H, Zeng W, Yu R, Wu X, Shen L, Liu Y, Li J (2019) The potential role of brassinosteroids (BRs) in alleviating antimony (Sb) stress in Arabidopsis thaliana. Plant Physiol Biochem 141:51–59. https://doi.org/10.1016/j.plaphy.2019.05.011

    CAS  Article  PubMed  Google Scholar 

  106. Xu C, Chen X, Duan D, Peng C, Le T, Shi J (2015) Effect of heavy-metal-resistant bacteria on enhanced metal uptake and translocation of the Cu-tolerant plant, Elsholtzia splendens. Environ Sci Pollut Res Int 22:5070–5081. https://doi.org/10.1007/s11356-014-3931-3

    CAS  Article  PubMed  Google Scholar 

  107. Zeng W, Li F, Wu C, Yu R, Wu X, Shen L, Liu Y, Qiu G, Li J (2020) Role of extracellular polymeric substance (EPS) in toxicity response of soil bacteria Bacillus sp. S3 to multiple heavy metals. Bioprocess Biosyst Eng 43:153–167. https://doi.org/10.1007/s00449-019-02213-7

    CAS  Article  PubMed  Google Scholar 

  108. Zhao FJ, Ma Y, Zhu YG, Tang Z, McGrath SP (2015) Soil contamination in China: current status and mitigation strategies. Environ Sci Technol 49:750–759. https://doi.org/10.1021/es5047099

    CAS  Article  PubMed  Google Scholar 

  109. Zhou X, Sun C, Zhu P, Liu F (2018) Effects of antimony stress on photosynthesis and growth of Acorus calamus. Front Plant Sci 9:579. https://doi.org/10.3389/fpls.2018.00579

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [grant number: 31470230]; Natural Science Foundation of Hunan Province of China [grant number: 2019JJ40361]; Fundamental Research Funds for the Central Universities of Central South University [grant number: 2019zzts687].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jiaokun Li.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Antony Van der Ent

Electronic supplementary material

Fig. S1
figure7

Effect of Sb(III) concentration on the IAA production and ACC deaminase activity in Bacillus sp. S3. Significant differences between treatment groups and the control are indicated as * (p < 0.05) (PNG 8258 kb)

High Resolution Image (TIF 7606 kb)

Table S1

(DOCX 19 kb)

Table S2

(DOCX 21 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gu, T., Yu, H., Li, F. et al. Antimony-oxidizing bacteria alleviate Sb stress in Arabidopsis by attenuating Sb toxicity and reducing Sb uptake. Plant Soil (2020). https://doi.org/10.1007/s11104-020-04569-2

Download citation

Keywords

  • Antimony
  • Arabidopsis
  • Plant growth promoting bacteria (PGPB)
  • Sb(III)-oxidizing bacteria
  • Phytoremediation