Skip to main content
Log in

Exploring near-surface ground ice distribution in patterned-ground tundra: correlations with topography, soil and vegetation

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

For informed predictions on the sensitivity of Arctic tundra landscape to permafrost thaw, we aimed to investigate the distribution pattern of near-surface ground ice and its influencing factors in Northeast Siberia.

Methods

Near-surface permafrost cores (60 cm) were sampled along small-scale topographic gradients in two drained lakebeds. We investigated which factors (vegetation, hydrological and soil) correlated strongest with ice content and explored its spatial heterogeneity at different scales (1 to 100 m).

Results

The ice content was highest in the depressions of the wet lakebed and lowest at the slopes of the dry lakebed. In the wet lakebed the ice content increased with depth, while in the dry lakebed the vertical distribution depended on topographical position. Spatial variability in ice content was similar at different scales, stressing strong influence of local drivers. 0–60 cm ice content correlated strongest with soil moisture of the overlying unfrozen soil, while 0–20 cm ice content correlated strongest with vegetation characteristics.

Conclusions

Our study implies that vegetation effect on microclimate is strong enough to affect near-surface ice distribution, and that ice-rich tundra may be highly sensitive to thaw once climate warming offsets the protective impact of vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  • Bennett MR (2009) Patterned ground. In: Gornitz V (ed) Encyclopedia of paleoclimatology and ancient environments. Springer Netherlands, Dordrecht

    Google Scholar 

  • Billings WD, Peterson KM (1980) Vegetational change and ice-wedge polygons through the thaw-lake cycle in Arctic Alaska. Arct Alp Res 12:413–432. https://doi.org/10.2307/1550492

    Article  Google Scholar 

  • Biskaborn BK, Smith SL, Noetzli J, Matthes H, Vieira G, Streletskiy DA, Schoeneich P, Romanovsky VE, Lewkowicz AG, Abramov A, Allard M, Boike J, Cable WL, Christiansen HH, Delaloye R, Diekmann B, Drozdov D, Etzelmuller B, Grosse G, Guglielmin M, Ingeman-Nielsen T, Isaksen K, Ishikawa M, Johansson M, Johannsson H, Joo A, Kaverin D, Kholodov A, Konstantinov P, Kroger T, Lambiel C, Lanckman JP, Luo DL, Malkova G, Meiklejohn I, Moskalenko N, Oliva M, Phillips M, Ramos M, Sannel ABK, Sergeev D, Seybold C, Skryabin P, Vasiliev A, Wu QB, Yoshikawa K, Zheleznyak M, Lantuit H (2019) Permafrost is warming at a global scale. Nat Commun 10:264

    Article  Google Scholar 

  • Blok D, Heijmans MMPD, Schaepman-Strub G, Kononov AV, Maximov TC, Berendse F (2010) Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Glob Chang Biol 16:1296–1305. https://doi.org/10.1111/j.1365-2486.2009.02110.x

    Article  Google Scholar 

  • Blok D, Heijmans MMPD, Schaepman-Strub G, Ruijven J, Parmentier FJW, Maximov TC, Berendse F (2011) The cooling capacity of mosses: controls on water and energy fluxes in a Siberian tundra site. Ecosystems 14:1055–1065. https://doi.org/10.1007/s10021-011-9463-5

    Article  Google Scholar 

  • Bobrov AA, Wetterich S, Beermann F, Schneider A, Kokhanova L, Schirrmeister L, Pestryakova LA, Herzschuh U (2013) Testate amoebae and environmental features of polygon tundra in the Indigirka lowland (East Siberia). Polar Biol 36:857–870. https://doi.org/10.1007/s00300-013-1311-y

    Article  Google Scholar 

  • Bockheim JG, Hinkel KM (2012) Accumulation of excess ground ice in an age sequence of drained thermokarst lake basins, Arctic Alaska. Permafr Periglac Process 23:231–236. https://doi.org/10.1002/ppp.1745

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304

    Article  Google Scholar 

  • de Klerk P, Donner N, Karpov NS, Minke M, Joosten H (2011) Short-term dynamics of a low-centred ice-wedge polygon near Chokurdakh (NE Yakutia, NE Siberia) and climate change during the last ca 1250 years. Quat Sci Rev 30:3013–3031. https://doi.org/10.1016/j.quascirev.2011.06.016

    Article  Google Scholar 

  • Ershov E, Kondratjeva K (1996) Geocryological map of USSR, scale 1: 2 500 000. Moscow State University Press, Moscow

    Google Scholar 

  • French HM (2013) The periglacial environment, 3rd edn. Wiley-Blackwell, Hoboken

    Google Scholar 

  • Gornall JL, Jónsdóttir IS, Woodin SJ, Van der Wal R (2007) Arctic mosses govern below-ground environment and ecosystem processes. Oecologia 153:931–941. https://doi.org/10.1007/s00442-007-0785-0

    Article  CAS  PubMed  Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110. https://doi.org/10.1023/a:1008119611481

    Article  Google Scholar 

  • Huang J, Zhang X, Zhang Q, Lin Y, Hao M, Luo Y, Zhao Z, Yao Y, Chen X, Wang L, Nie S, Yin Y, Xu Y, Zhang J (2017) Recently amplified arctic warming has contributed to a continual global warming trend. Nat Clim Chang 7:875–879. https://doi.org/10.1038/s41558-017-0009-5

    Article  Google Scholar 

  • Hugelius G (2012) Spatial upscaling using thematic maps: an analysis of uncertainties in permafrost soil carbon estimates. Glob Biogeochem Cycles 26. https://doi.org/10.1029/2011GB004154

    Article  Google Scholar 

  • Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur EAG, Ping CL, Schirrmeister L, Grosse G, Michaelson GJ, Koven CD, O'Donnell JA, Elberling B, Mishra U, Camill P, Yu Z, Palmtag J, Kuhry P (2014) Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11:6573–6593

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York

    Google Scholar 

  • Kanevskiy M, Shur Y, Jorgenson M, Ping C-L, Michaelson G, Fortier D, Stephani E, Dillon M, Tumskoy V (2013) Ground ice in the upper permafrost of the Beaufort Sea coast of Alaska. Cold Reg Sci Technol 85:56–70

    Article  Google Scholar 

  • Kokelj SV, Burn CR (2005) Near-surface ground ice in sediments of the Mackenzie Delta, Northwest Territories, Canada. Permafr Periglac Process 16:291–303. https://doi.org/10.1002/ppp.537

    Article  Google Scholar 

  • Kuhry P (1998) Late Holocene permafrost dynamics in two subarctic peatlands of the Hudson Bay lowlands (Manitoba, Canada). Eurasian Soil Sci 31:529–534

    Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RHB (2014) lmerTest: tests in linear mixed effects models. R package version 2.0-20. http://cran.r-project.org/web/packages/lmerTest/index.html. Accessed 22 Nov 2014

  • Li B, Heijmans MMPD, Berendse F, Blok D, Maximov TC, Sassklaassen U (2016) The role of summer precipitation and summer temperature in establishment and growth of dwarf shrub Betula nana in northeast Siberian tundra. Polar Biol 39:1245–1255

    Article  Google Scholar 

  • Li B, Heijmans MMPD, Blok D, Wang P, Karsanaev SV, Maximov TC, van Huissteden J, Berendse F (2017) Thaw pond development and initial vegetation succession in experimental plots at a Siberian lowland tundra site. Plant Soil 420:147–162. https://doi.org/10.1007/s11104-017-3369-8

    Article  CAS  Google Scholar 

  • Loranty MM, Abbott BW, Blok D, Douglas TA, Epstein HE, Forbes BC, Jones BM, Kholodov AL, Kropp H, Malhotra A, Mamet SD, Myers-Smith IH, Natali SM, O'Donnell JA, Phoenix GK, Rocha AV, Sonnentag O, Tape KD, Walker DA (2018) Reviews and syntheses: changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 15:5287–5313. https://doi.org/10.5194/bg-15-5287-2018

    Article  CAS  Google Scholar 

  • McGuire AD, Lawrence DM, Koven C, Clein JS, Burke E, Chen G, Jafarov E, MacDougall AH, Marchenko S, Nicolsky D, Peng S, Rinke A, Ciais P, Gouttevin I, Hayes DJ, Ji D, Krinner G, Moore JC, Romanovsky V, Schädel C, Schaefer K, Schuur EAG, Zhuang Q (2018) Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc Natl Acad Sci 115:3882–3887. https://doi.org/10.1073/pnas.1719903115

    Article  CAS  PubMed  Google Scholar 

  • Minke M, Donner N, Karpov NS, de Klerk P, Joosten H (2007) Distribution, diversity, development and dynamics of polygon mires: examples from northeast Yakutia (Siberia). Peatland International: 36-40

  • Morse P, Burn C, Kokelj S (2009) Near-surface ground-ice distribution, Kendall Island Bird Sanctuary, western Arctic coast, Canada. Permafr Periglac Process 20:155–171

    Article  Google Scholar 

  • Nauta AL, Heijmans MMPD, Blok D, Limpens J, Elberling B, Gallagher A, Li BX, Petrov RE, Maximov TC, van Huissteden J, Berendse F (2015) Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nat Clim Chang 5:67–70. https://doi.org/10.1038/Nclimate2446

    Article  CAS  Google Scholar 

  • O’Neill HB, Burn C (2012) Physical and temporal factors controlling the development of near-surface ground ice at Illisarvik, western Arctic coast, Canada. Can J Earth Sci 49:1096–1110

    Article  Google Scholar 

  • Obu J, Westermann S, Bartsch A, Berdnikov N, Christiansen HH, Dashtseren A, Delaloye R, Elberling B, Etzelmüller B, Kholodov A, Khomutov A, Kääb A, Leibman MO, Lewkowicz AG, Panda SK, Romanovsky V, Way RG, Westergaard-Nielsen A, Wu T, Yamkhin J, Zou D (2019) Northern hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth Sci Rev 193:299–316. https://doi.org/10.1016/j.earscirev.2019.04.023

    Article  Google Scholar 

  • Park H, Kim Y, Kimball JS (2016) Widespread permafrost vulnerability and soil active layer increases over the high northern latitudes inferred from satellite remote sensing and process model assessments. Remote Sens Environ 175:349–358. https://doi.org/10.1016/j.rse.2015.12.046

    Article  Google Scholar 

  • Plaza C, Pegoraro E, Bracho R, Celis G, Crummer KG, Hutchings JA, Pries CEH, Mauritz M, Natali SM, Salmon VG, Schädel C, Webb EE, Schuur EAG (2019) Direct observation of permafrost degradation and rapid soil carbon loss in tundra. Nat Geosci 12:627–631. https://doi.org/10.1038/s41561-019-0387-6

    Article  CAS  Google Scholar 

  • Romanovsky VE, Smith SL, Christiansen HH (2010) Permafrost thermal state in the polar northern hemisphere during the international polar year 2007–2009: a synthesis. Permafr Periglac Process 21:106–116. https://doi.org/10.1002/ppp.689

    Article  Google Scholar 

  • Rosseel Y (2012) lavaan: an R package for structural equation modeling. J Stat Softw 48:1–36. https://doi.org/10.18637/jss.v048.i02

    Article  Google Scholar 

  • Schädel C, Bader MKF, Schuur EAG, Biasi C, Bracho R, Capek P, De Baets S, Diakova K, Ernakovich J, Estop-Aragones C, Graham DE, Hartley IP, Iversen CM, Kane ES, Knoblauch C, Lupascu M, Martikainen PJ, Natali SM, Norby RJ, O'Donnell JA, Chowdhury TR, Santruckova H, Shaver G, Sloan VL, Treat CC, Turetsky MR, Waldrop MP, Wickland KP (2016) Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat Clim Chang 6:950

    Article  Google Scholar 

  • Schirrmeister L, Bobrov A, Raschke E, Herzschuh U, Strauss J, Pestryakova LA, Wetterich S (2018) Late Holocene ice-wedge polygon dynamics in northeastern Siberian coastal lowlands. Arct Antarct Alp Res 50:e1462595. https://doi.org/10.1080/15230430.2018.1462595

    Article  Google Scholar 

  • Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, Hagemann S, Kuhry P, Lafleur PM, Lee H, Mazhitova G, Nelson FE, Rinke A, Romanovsky VE, Shiklomanov N, Tarnocai C, Venevsky S, Vogel JG, Zimov SA (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58:701–714. https://doi.org/10.1641/B580807

    Article  Google Scholar 

  • Shur Y, Hinkel KM, Nelson FE (2005) The transient layer: implications for geocryology and climate-change science. Permafr Periglac Process 16:5–17

    Article  Google Scholar 

  • Siewert MB, Hanisch J, Weiss N, Kuhry P, Maximov TC, Hugelius G (2015) Comparing carbon storage of Siberian tundra and taiga permafrost ecosystems at very high spatial resolution. J Geophys Res 120:1973–1994. https://doi.org/10.1002/2015JG002999

    Article  CAS  Google Scholar 

  • Teltewskoi A, Beermann F, Beil I, Bobrov A, De Klerk P, Lorenz S, Lüder A, Michaelis D, Joosten H (2016) 4000 years of changing wetness in a permafrost polygon peatland (Kytalyk, NE Siberia): a comparative high-resolution multi-proxy study. Permafr Periglac Process 27:76–95. https://doi.org/10.1002/ppp.1869

    Article  Google Scholar 

  • Thompson DK, Waddington JM (2008) Sphagnum under pressure: towards an ecohydrological approach to examining Sphagnum productivity. Ecohydrology 1:299–308. https://doi.org/10.1002/eco.31

    Article  Google Scholar 

  • Walker DA, Raynolds MK, Daniëls FJ, Einarsson E, Elvebakk A, Gould WA, Katenin AE, Kholod SS, Markon CJ, Melnikov ES (2005) The circumpolar Arctic vegetation map. J Veg Sci 16:267–282

    Article  Google Scholar 

  • Wang P, Limpens J, Mommer L, van Ruijven J, Nauta AL, Berendse F, Schaepman-Strub G, Blok D, Maximov TC, Heijmans MMPD (2017) Above- and below-ground responses of four tundra plant functional types to deep soil heating and surface soil fertilization. J Ecol 105:947–957. https://doi.org/10.1111/1365-2745.12718

    Article  Google Scholar 

  • Zhang T, Barry RG, Knowles K, Heginbottom J, Brown J (1999) Statistics and characteristics of permafrost and ground-ice distribution in the northern hemisphere 1. Polar Geogr 23:132–154

    Article  Google Scholar 

  • Zimov SA, Schuur EAG, Chapin FS III (2006) Permafrost and the global carbon budget. Science 312:1612–1613

    Article  CAS  Google Scholar 

  • Zwanenburg N (2018) Characteristics of ice-rich permafrost soils and their effect on thermokarst expansion rates in Interior Alaskan peatlands. Department of Integrative Biology. The University of Guelph, Guelph, Ontario, Canada

Download references

Acknowledgements

We thank staff of IBPC, Yakutsk, T. Strukova and S. Ianygin of the Regional Inspection of Nature Protection of Allaikhovsky Region, Chokurdakh, and Lena the cook for logistic support and assistance in the field. Figure 2a was drawn by Kailing Huang, which is greatly appreciated. We acknowledge financial support from National Natural Science Foundation of China (31700453), Jo Kolk Studiefonds, Darwin Center for Biogeosciences (project 1043), and The Netherlands Organisation for Scientific Research (Vidi-project 864.09.014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Wang or Juul Limpens.

Additional information

Responsible Editor: Jeffrey Walck.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 410 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., de Jager, J., Nauta, A. et al. Exploring near-surface ground ice distribution in patterned-ground tundra: correlations with topography, soil and vegetation. Plant Soil 444, 251–265 (2019). https://doi.org/10.1007/s11104-019-04276-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04276-7

Keywords

Navigation