Soil water-holding capacity and monodominance in Southern Amazon tropical forests

Abstract

Background and aims

We explored the hypothesis that low soil water-holding capacity is the main factor driving the monodominance of Brosimum rubescens in a monodominant forest in Southern Amazonia. Tropical monodominant forests are rare ecosystems with low diversity and high dominance of a single tree species. The causes of this atypical condition are still poorly understood. Some studies have shown a relationship between monodominance and waterlogging or soil attributes, while others have concluded that edaphic factors have little or no explanatory value, but none has accounted for soil-moisture variation other than waterlogging. This study is the first to explicitly explore how low soil water-holding capacity influences the monodominance of tropical forests.

Methods

We conducted in situ measurements of vertical soil moisture using electrical resistance collected over 1 year at 0–5; 35–40 and 75–80 cm depths in a B. rubescens monodominant forest and in an adjacent mixed-species forest in the Amazon-Cerrado transition zone, Brazil. Minimum leaf water potential (Ψmin) of the seven most common species, including B. rubescens, and soil water-holding capacity for both forests were determined.

Results

The vertical soil moisture decay pattern was similar in both forests for all depths. However, the slightly higher water availability in the monodominant forest and Ψmin similarity between B. rubescens and nearby mixed forest species indicate that low water-availability does not cause the monodominance.

Conclusions

We reject the hypothesis that monodominance of B. rubescens is primarily determined by low soil water-holding capacity, reinforcing the idea that monodominance in tropical forests is not determined by a single factor.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Araújo MA, Tormena CA, Silva AP (2004) Propriedades físicas de um latossolo vermelho distrófico cultivado e sob mata nativa. Rev Bras Ciênc Solo 28:337–345

    Google Scholar 

  2. Arieira J, Cunha CN (2006) Fitossociologia de uma floresta inundável monodominante de Vochysia divergens Pohl (Vochysiaceae), no Pantanal Norte, MT, Brasil. Acta Bot Bras 20:569–580

    Google Scholar 

  3. Ayres M, Ayres-Júnior M, Ayres D, Santos AS (2003) Biostat 3.0: Aplicações estatísticas nas áreas das ciências biológicas e médicas. Sociedade Cívil Mamirauá, Belém

    Google Scholar 

  4. Bittencourt PRL, Pereira L, Oliveira RS (2016) On xylem hydraulic efficiencies, wood space-use and the safety–efficiency tradeoff. New Phytol 211:1152–1155

    PubMed  Google Scholar 

  5. Brady NC, Weil RR (1996) The nature and properties of soils, 19th edn. Prentice Hall, New Jersey

    Google Scholar 

  6. Brum M, Vadeboncoeur MA, Ivanov V, Asbjornsen H, Saleska S, Alves LF, Penha D, Dias JD, Aragão LEOC, Barros F, Bittencourt P, Pereira L, Oliveira RS (2018) Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. J Ecol 107:318–333

  7. Butt N, Malhi Y, New M, Macía MJ, Lewis SL, Lopez-Gonzalez G, Lawrance WF, Laurance S, Luizão R, Andrade A, Baker TR, Almeida S, Phillips OL (2014) Shifting dynamics of climate-functional groups in old-growth Amazonian forests. Plant Ecolog Divers 7:267–279

    Google Scholar 

  8. Caldwell MM, Richards JH (1986) Competing root systems: morphology and models of absorption. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 251–273

    Google Scholar 

  9. Carvalheiro K, Nepstad D (1996) Deep soil heterogeneity and fine root distribution in forests and pasture of eastern Amazonia. Plant Soil 182:279–285

    CAS  Google Scholar 

  10. Condit R, Hubbell S, Foster R (1996) Changes in tree species abundance in a Neotropical forest: impact of climate change. J Trop Ecol 12:231–225

    Google Scholar 

  11. Connell JH, Lowman MD (1989) Low-diversity tropical rain forests: some possible mechanisms for their existence. Am Nat 134:88–119

    Google Scholar 

  12. Cosme LHM, Schietti J, Costa FRC, Oliveira RS (2017) The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest. New Phytol 215(1):113–125

    PubMed  Google Scholar 

  13. Davis TAW, Richards PW (1934) The vegetation of Moraballi Creek, British Guiana: an ecological study of a limited area of tropical rain forest, part II. J Ecol 22:106–155

    CAS  Google Scholar 

  14. Dunne KA, Willmott CJ (1996) Global distribution of plant-extractable water capacity of soil. Int J Climatol 16:841–859

    Google Scholar 

  15. Durigan G, Ratter JA (2006) Successional changes in cerrado and cerrado/forest ecotonal vegetation in western São Paulo state, Brazil, 1962-2000. Edinb J Bot 63:119–130

    Google Scholar 

  16. EMBRAPA Empresa Brasileira de Pesquisa Agropecuária (1997) Manual de métodos de análise de solo. Centro Nacional de Pesquisa de Solos, Rio de Janeiro

  17. Esquivel-Muelbert A, Baker TR, Dexter KG, Lewis SL, ter Steege H, Lopez-Gonzalez G, Monteagudo Mendoza A, Brienen R, Feldpausch TR, Pitman N, Alonso A, van der Heijden G, Peña-Claros M, Ahuite M, Alexiaides M, Álvarez Dávila E, Murakami AA, Arroyo L, Aulestia M, Balslev H, Barroso J, Boot R, Cano A, Chama Moscoso V, Comiskey JA, Cornejo F, Dallmeier F, Daly DC, Dávila N, Duivenvoorden JF, Duque Montoya AJ, Erwin T, di Fiore A, Fredericksen T, Fuentes A, García-Villacorta R, Gonzales T, Guevara Andino JE, Honorio Coronado EN, Huamantupa-Chuquimaco I, Eliana Maria Jiménez R, Killeen TJ, Malhi Y, Mendoza C, Mogollón H, Jørgensen PM, Montero JC, Mostacedo B, Nauray W, Neill D, Vargas PN, Palacios S, Palacios Cuenca W, Pallqui Camacho NC, Peacock J, Phillips JF, Pickavance G, Quesada CA, Ramírez-Angulo H, Restrepo Z, Reynel Rodriguez C, Paredes MR, Peñuela-Mora MC, Sierra R, Silveira M, Stevenson P, Stropp J, Terborgh J, Tirado M, Toledo M, Torres-Lezama A, Umaña MN, Urrego LE, Vasquez Martinez R, Gamarra LV, Vela CIA, Vilanova Torre E, Vos V, von Hildebrand P, Vriesendorp C, Wang O, Young KR, Zartman CE, Phillips OL (2017) Seasonal drought limits tree species across the Neotropics. Ecography 40:618–629

    Google Scholar 

  18. Esquivel-Muelbert A, Baker TR, Dexter KG, Lewis SL, Brienen RJ, Feldpausch TR, Lloyd J, Monteagudo-Mendoza A, Arroyo L, Álvarez-Dávila E, Higuchi N et al (2018) Compositional response of Amazon forests to climate change. Glob Chang Biol 25:39–56

    PubMed  PubMed Central  Google Scholar 

  19. Feng X, Dawson TE, Ackerly DD, Santiago LS, Thompson SE (2017) Reconciling seasonal hydraulic risk and plant water use through probabilistic soil–plant dynamics. Glob Chang Biol 23:3758–3769

    PubMed  Google Scholar 

  20. Ferreira JN, Bustamante MMC, Garcia-Montiel DC, Caylor KK, Davidson EA (2007) Spatial variation in vegetation structure coupled to plant available water determined by two-dimensional soil resistivity profiling in a Brazilian savanna. Oecologia 1:1–14

    Google Scholar 

  21. Franco AC (2005) Biodiversidade de forma e função: implicações ecofisiológicas das estratégias de utilização de água e luz em plantas lenhosas do cerrado. In: Scariot AO, Souza-Silva JC, Felfili, JM (eds) Cerrado: Ecologia, Biodiversidade e conservação. Ministério do Meio Ambiente, Brasília, pp 181–195

  22. Furley PA (1992) Edaphic changes at the forest-savanna boundary with particular reference to the neotropics. In: Furley PA, Proctor J, Ratter JA (eds) Nature and dynamics of forest-savanna boundaries. Chapman & Hall, London, pp 91–117

    Google Scholar 

  23. Furley PA, Ratter JA (1990) Pedological and botanical variations across the forest-savanna transition on Maracá Island. Geogr J 156:251–266

    Google Scholar 

  24. Hart TB, Hart JA, Murphy PG (1989) Monodominant and species-rich forests of the humid tropics: causes for their co-occurrence. Am Nat 133:613–633

    Google Scholar 

  25. Henkel TW (2003) Monodominance in the ectomycorrhizal Dicymbe corymbosa (Caesalpiniaceae) from Guyana. J Trop Ecol 19:417–437

    Google Scholar 

  26. Hillel D (1971) Soil and water: physical principles and processes. Academic Press, New York

    Google Scholar 

  27. Ivanauskas NM (2002) Estudo da Vegetação na Área de transição entre Formações Florestais em Gaúcha do Norte-MT. PhD Thesis, Universidade de São Paulo

  28. Ivanauskas NM, Rodrigues RR, Nave AG (1997) Aspectos ecológicos de um trecho de Floresta de brejo em Itatinga, SP: florística, fitossociologia e seletividade de espécies. Braz J Bot 20:139–153

    Google Scholar 

  29. Jancoski HS (2019) Características morfofuncionais de árvores em resposta à sazonalidade climática e herbivoria na transição Cerrado/Amazônia. PhD Thesis, Universidade do Estado de Mato Grosso

  30. Jipp PH, Nepstad DC, Cassel DK, Carvalho CR (1998) Deep soil moisture and transpiration in forests and pastures of seasonally-dry Amazônia. Clim Chang 39:395–412

    Google Scholar 

  31. Juhász CEP, Cursi PR, Cooper M, Oliveira TC (2006) Dinâmica físico-hídrica de uma toposseqüência de solos sob savana florestada (Cerradão) em Assis, SP, Brasil. Rev Bras Ciênc Solo 30:401–412

    Google Scholar 

  32. Lopes AS (1984) Solos sob “Cerrado”. Associação Brasileira para Pesquisa da Potassa e do Fosfato, Piracicaba

    Google Scholar 

  33. Marimon BS (2005) Dinâmica de uma floresta monodominante de Brosimum rubescens Taub. e comparação com uma floresta mista adjacente em Nova Xavantina-MT. PhD thesis, Universidade de Brasília

  34. Marimon BS, Felfili JM, Haridasan M (2001) Studies in monodominant forests in eastern Mato Grosso, Brazil: I. a forest of Brosimum rubescens Taub. Edinb J Bot 58(1):123–137

    Google Scholar 

  35. Marimon BS, Felfili JM, Lima ES, Pinheiro-Neto J (2003) Padrões de distribuição de espécies na mata de galeria do Córrego Bacaba, Nova Xavantina, Mato Grosso, em relação a fatores ambientais. Bol Herb E P Her 12:1–10

    Google Scholar 

  36. Marimon BS, Felfili JM, Marimon-Junior BH, Franco AC, Fagg CW (2008) Desenvolvimento inicial e partição de biomassa de Brosimum rubescens Taub. (Moraceae) sob diferentes níveis de sombreamento. Acta Bot Bras 22:941–953

    Google Scholar 

  37. Marimon BS, Felfili JM, Fagg CW, Marimon-Junior BH, Umetsu RK, Oliveira-Santos C, Morandi PS, Lima HS, Nascimento AT (2012) Monodominance in a forest of Brosimum rubescens Taub. (Moraceae): structure and dynamics of natural regeneration. Acta Oecol 43:134–139

    Google Scholar 

  38. Marimon BS, Marimon-Junior BH, Feldpausch TR, Oliveira-Santos C, Mews HA, Lopez-Gonzalez G, Lloyd J, Franczak DD, de Oliveira EA, Maracahipes L, Miguel A, Lenza E, Phillips OL (2014) Disequilibrium and hyperdynamic tree turnover at the forest–cerrado transition zone in southern Amazonia. Plant Ecolog Divers 7:281–292

    Google Scholar 

  39. Marimon-Junior BH (2007) Relação entre diversidade arbórea e aspectos do ciclo biogeoquímico de uma floresta monodominante de Brosimum rubescens Taub. e uma floresta mista adjacente no Leste Mato-grossense. PhD Thesis, Universidade de Brasília

  40. Marimon-Junior BH, Haridasan M (2005) Comparação da vegetação arbórea e características edáficas de um cerradão e um cerrado sensu stricto em áreas adjacentes sobre um solo distrófico no leste de Mato grosso, Brasil. Acta Bot Bras 19:913–926

    Google Scholar 

  41. Martijena NE (1998) Soil properties and seedling establishment in soils from monodominant and high-diversity stands of the neotropical deciduous forests of México. J Biogeogr 25:707–719

    Google Scholar 

  42. Meinzer F, Jonhson DM, Lachenbruch B, Mcculloh KA, Woodruff DR (2009) Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Funct Ecol 23:922–930

    Google Scholar 

  43. Naiman RJ, Decamps H, Pollock M (1993) The role of riparian corridors in maintaining regional biodiversity. Ecological Applications 3: 209–212

  44. Nascimento MT, Cunha CN (1989) Estrutura e composição florística de um Cambarazal no pantanal de Poconé-MT. Acta Bot Bras 3:3–23

    Google Scholar 

  45. Nascimento MT, Proctor J (1997) Soil and plant changes across a monodominant rain forest boundary on maraca island, Roraima, Brazil. Glob Ecol Biogeogr 6:387–395

    Google Scholar 

  46. Nascimento MT, Proctor J, Villela DM (1997) Forest structure, floristic composition and soils of an Amazonian monodominant forest on Maracá Island, Roraima, Brazil. Edinb J Bot 54(1):1–38

    Google Scholar 

  47. Nascimento MT, Barbosa RI, Dexter K, Castilho CV, Carvalho LCS, Villela DM (2017) Is the Peltogyne gracilipes monodominant forest characterised by distinct soils? Acta Oecol 85:104–107

    Google Scholar 

  48. Nepstad DC, Carvalho CR, Davidson EA, Jipp PH, Lefebvre PA, Negreiros GH, Silva ED, Stone TA, Trumbore SE, Vieira S (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:666–669

    CAS  Google Scholar 

  49. Nepstad DC, Moutinho P, Dias-Filho MB, Davidson E, Cardinot G, Markewitz D, Figueiredo R, Vianna N, Chambers J, Ray D, Guerreiros JB, Lefebvre P et al (2002) The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest. J Geophys Res 107:1–18

    Google Scholar 

  50. Nye PH, Tinker PB (1977) Solute movement in the soil-root system. University of California Press, Berkeley

    Google Scholar 

  51. Oliveira RS, Bezerra L, Davidson EA, Pinto F, Klink CA, Nepstad DC, Moreira A (2005) Deep root function in soil water dynamics in cerrado savannas of Central Brazil. Funct Ecol 19:574–581

    Google Scholar 

  52. Oliveira RS, Costa FRC, van Baalen E, de Jonge A, Bittencourt PR, Almanza Y, Barros FV, Cordoba EC, Fagundes MV, Garcia S, Guimaraes ZTM, Hertel M, Schietti J, Rodrigues-Souza J, Poorter L (2018) Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. New Phytol 221:1457–1465. https://nph.onlinelibrary.wiley.com/doi/epdf/10.1111/nph.15463

    PubMed  Google Scholar 

  53. Peacock J, Baker TR, Lewis SL, Lopez-Gonzalez G, Phillips OL (2007) The RAINFOR database: monitoring forest biomass and dynamics. J Veg Sci 18:535–542

    Google Scholar 

  54. Peh KSH, Sonké B, Lloyd J, Quesada CA, Lewis SL (2011a) Soil does not explain monodominance in a central African tropical forest. PLoS One 6:e16996

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Peh KSH, Lewis SL, Lloyd J (2011b) Mechanisms of monodominance in diverse tropical tree-dominated systems. J Ecol 99:891–898

    Google Scholar 

  56. Pinto JRR, Oliveira-Filho AT (1999) Perfil florístico e estrutura da comunidade arbórea de uma floresta de vale no Parque Nacional da Chapada dos Guimarães, Mato Grosso, Brasil. Rev Bras Bot 22:53–67

    Google Scholar 

  57. Quesada CA, Miranda AC, Hodnet MG, Santos AJB, Miranda HS, Breyer LM (2004) Seasonal and depth variation of soil moisture in a burned open savanna (campo sujo) in Central Brazil. Ecol Appl 14:S33–S41

    Google Scholar 

  58. Quesada CA, Phillips OL, Schwarz M, Czimczik CI, Baker TR, Patiño S, Fyllas NM, Hodnett MG, Herrera R, Almeida S, Alvarez Dávila E, Arneth A, Arroyo L, Chao KJ, Dezzeo N, Erwin T, di Fiore A, Higuchi N, Honorio Coronado E, Jimenez EM, Killeen T, Lezama AT, Lloyd G, López-González G, Luizão FJ, Malhi Y, Monteagudo A, Neill DA, Núñez Vargas P, Paiva R, Peacock J, Peñuela MC, Peña Cruz A, Pitman N, Priante Filho N, Prieto A, Ramírez H, Rudas A, Salomão R, Santos AJB, Schmerler J, Silva N, Silveira M, Vásquez R, Vieira I, Terborgh J, Lloyd J (2012) Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9:2203–2246

    Google Scholar 

  59. Reis AEG, Rassini JB (1986) Aproveitamento de Várzeas. In: Goedert WJ (org) Solos dos Cerrados. Embrapa/Nobel, São Paulo, pp 353–384

    Google Scholar 

  60. Reynolds CA, Jackson TJ, Rawls WJ (2000) Estimating soil water-holding capacities by linking the food and agriculture organization soil map of the world with global pedon databases and continuous pedotransfer functions. Water Resour Res 36:3653–3662

    Google Scholar 

  61. Richards JH, Caldwell MM (1987) Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73:486–489

    CAS  PubMed  Google Scholar 

  62. Richards LA, Weaver LR (1943) Fifteen-atmosphere percentage as related to the permanent wilting percentage. Soil Sci 56:331–339

    CAS  Google Scholar 

  63. Rodrigues RR (1992) Análise da vegetação nas margens do Rio Passa Cinco, Ipeúna, SP. PhD Thesis. Unicamp

  64. Rodrigues RR, Shepherd GJ (2000) Fatores condicionantes da vegetação ciliar. In: Rodrigues RR, Leitão-Filho HF (eds) Matas ciliares: conservação e recuperação. Edusp/Fapesp, São Paulo, pp 101–107

    Google Scholar 

  65. Sampaio AB, Walter BMT, Felfili JM (2000) Diversidade e distribuição de espécies arbóreas em duas matas de galeria na micro-bacia do Riacho Fundo, Distrito Federal. Acta Bot Bras 14:197–214

    Google Scholar 

  66. Scholander PF, Bradstreet ED, Hemmingsen EA, Hammel HT (1965) Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants. Science 148:339–346

    CAS  PubMed  Google Scholar 

  67. Scholz FG, Bucci SJ, Goldstein G, Meinzer FC, Franco AC (2002) Hydraulic redistribution of soil water by savanna trees. Tree Physiol 22:603–612

    PubMed  Google Scholar 

  68. Silva-Júnior MC (1997) Relationships between the tree communities of the Pitoco, Monjolo and Taquara gallery forests and environmental factors. In: Kleinn C (ed) Imaña-Encinas J. Proceedings of the International Symposium on Assessment and Monitoring of Forests in Tropical Dry Regions with special reference to Gallery Forests, Brasília, pp 287–298

    Google Scholar 

  69. Sokal RR, Rohlf FJ (1981) Biometrics: the principle and practice of statistics in biological research, 2ed, W. H. Freeman & Co., San Francisco

    Google Scholar 

  70. Spera ST, Reatto A, Correia JR, Souza-Silva JC (2000) Características físicas de um latossolo vermelho-escuro no cerrado de Planaltina-DF submetido à ação do fogo. Pesq Agropec Bras 35:1817–1824

    Google Scholar 

  71. SPSS Incorporation (1997) SPSS for windows: statistical package for the social sciences release 7.0. SPSS Inc., Chicago

    Google Scholar 

  72. Taiz L, Zeiger E (1998) Plant physiology, 2nd edn. Sinauer associates, INC., Massachusetts

    Google Scholar 

  73. Tan KH (1996) Soil sampling, preparation, and analysis. Marcell Dekker, New York

    Google Scholar 

  74. Villela DM, Proctor J (2002) Leaf litter decomposition and monodominance in the Peltogyne Forest of Maracá Island, Brazil. Biotropica 31:198–211

    Google Scholar 

  75. Walter BMT (1995) Distribuição espacial de espécies perenes em uma mata de galeria inundável no Distrito Federal: florística e fitossociologia. Universidade de Brasília, MSc dissertation

    Google Scholar 

  76. Zar JH (1999) Bioestatistical analysis, prentice hall, 4ª edn. Jersey, New

  77. Zuleta D, Russo SE, Barona A, Barreto-Silva JS, Cardenas D, Castaño N, Davies SJ, Detto M, Sua S, Turner BJ, Duque A (2018) Importance of topography for tree species habitat distributions in a terra firme forest in the Colombian Amazon. Plant Soil. https://doi.org/10.1007/s11104-018-3878-0

Download references

Acknowledgements

We thank the Brazilian National Council of Science and Technology (CNPq) for the PVE project #401279 (Professor Oliver L. Phillips, University of Leeds-UK), CNPq/PPBio project (#457602), productivity grants PQ-2 to B.H. Marimon-Junior and PQ-1 to B.S. Marimon and CNPq/PELD Etapa III (LTER) (#441244/2016-5). This research was also partially supported by Project USA-NAS/PEER (#PGA-2000005316) and Project ReFlor FAPEMAT 0589267/2016. We also thanks to MSc Emma Docherty (University of Leeds) by the English review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ben Hur Marimon-Junior.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marimon-Junior, B.H., Hay, J.D.V., Oliveras, I. et al. Soil water-holding capacity and monodominance in Southern Amazon tropical forests. Plant Soil 450, 65–79 (2020). https://doi.org/10.1007/s11104-019-04257-w

Download citation

Keywords

  • Soil moisture
  • Monodominant species
  • Water stress
  • Soil gravel content
  • Permanent wilting point
  • Total porosity