Skip to main content
Log in

Enhanced Cd-Zn-Pb-contaminated soil phytoextraction by Sedum alfredii and the rhizosphere bacterial community structure and function by applying organic amendments

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

The phytoextraction efficiency of metal contaminated soil needs to be improved. Organic amendment can be used to enhance the effectiveness of phytoextraction. However, studies on how organic amendment influence the rhizosphere microbial community of hyperaccumulators are still scarce.

Methods

Two kinds of spent mushroom substrates (H and T) and their biochars (HB and TB) were used to facilitate the phytoextraction by Sedum alfredii Hance. The phytoextraction efficiency was monitored by measuring Cd, Zn and Pb extraction and the subsequent changes of soil microbial biomass, activity and diversity (indicators of soil health and functioning) .

Results

Compared to the control, the H and T amendments increased S. alfredii Cd uptake by 92% and 73%, and Zn by 106% and 67%, respectively. Organic amendments increased the microbial biomass and activities and substantially changed bacterial composition and diversity of rhizosphere soil. The relative abundances of some rhizosphere beneficial genera such as Promicromonospora, Acidibacter, Roseiflexus, Microbispora, Kribbella and Streptomyces were significantly increased under the H and T treatments.

Conclusions

Spent mushroom substrates enhanced metal extraction of S. alfredii and improved soil health by increasing microbial biomass, activity and changing microbial community composition thus providing an effective option to facilitate phytoextraction of metal contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad M, Ok YS, Rajapaksha AU, Lim JE, Kim BY, Ahn JH, Leed YH, Al-Wabelb MI, Lee SE, Lee SS (2016) Lead and copper immobilization in a shooting range soil using soybean Stover- and pine needle-derived biochars: chemical, microbial and spectroscopic assessments. J Hazard Mater 301:179–186

    Article  CAS  PubMed  Google Scholar 

  • Alfonso R, Verónica A, Rubén F, Covelo EF (2016) Assessing the influence of technosol and biochar amendments combined with Brassica juncea on the fractionation of cu, Ni, Pb and Zn in a polluted mine soil. J Soils Sediments 16:339–348

    Article  CAS  Google Scholar 

  • Álvarez-López V, Prieto-Fernández Á, Cabello-Conejo MI, Kidd PS (2016) Organic amendments for improving biomass production and metal yield of Ni-hyperaccumulating plants. Sci Total Environ 548:370–379

    Article  PubMed  CAS  Google Scholar 

  • Bao SD (2000) Soil and agricultural chemistry analysis. China Agriculture Press, Beijing (in Chinese)

    Google Scholar 

  • Barbafieri M, Morelli E, Tassi E, Pedron F, Remorini D, Petruzzelli G (2018) Overcoming limitation of "recalcitrant areas" to phytoextraction process: the synergistic effects of exogenous cytokinins and nitrogen treatments. Sci Total Environ 639:1520–1529

    Article  CAS  PubMed  Google Scholar 

  • Bowles TM, Acosta-Martínez V, Calderón F, Jackson LE (2014) Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol Biochem 68:252–262

    Article  CAS  Google Scholar 

  • Burges A, Epelde L, Garbisu C (2015) Impact of repeated single-metal and multi-metal pollution events on soil quality. Chemosphere 120:8–15

    Article  CAS  PubMed  Google Scholar 

  • Burges A, Epelde L, Benito G, Artetxe U, Becerril JM, Garbisu C (2016) Enhancement of ecosystem services during endophyte-assisted aided phytostabilization of metal contaminated mine soil. Sci Total Environ 562:480–492

    Article  CAS  PubMed  Google Scholar 

  • Burges A, Epelde L, Blanco F, Becerril JM, Garbisu C (2017) Ecosystem services and plant physiological status during endophyte-assisted phytoremediation of metal contaminated soil. Sci Total Environ 584:329–338

    Article  PubMed  CAS  Google Scholar 

  • Cang L, Zhou DM, Wang QY, Wu DY (2009) Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities. J Hazard Mater 172:1602–1607

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Liu M, Deng Y, Zhong F, Xu B, Hu LM, Wang G (2017) Comparison of ammonium fertilizers, EDTA, and NTA on enhancing the uptake of cadmium by an energy plant, napier grass (Pennisetum purpureum schumach). J Soils Sediments 17:1–11

    Article  CAS  Google Scholar 

  • Chu Q, Sha Z, Osaki M, Watanabe T (2017) Contrasting effects of cattle manure applications and root-induced changes on heavy metals dynamics in the rhizosphere of soybean in an acidic haplic fluvisol: a chronological pot experiment. J Agric Food Chem 65:3085–3095

    Article  CAS  PubMed  Google Scholar 

  • Ciarkowska K (2018) Assessment of heavy metal pollution risks and enzyme activity of meadow soils in urban area under tourism load: a case study from Zakopane (Poland). Environ Sci Pollut R 25:13709–13718

    Article  CAS  Google Scholar 

  • Ciarkowska K, Sołekpodwika K, Wieczorek J (2014) Enzyme activity as an indicator of soil- rehabilitation processes at a zinc and lead ore mining and processing area. J Environ Manag 132:250–256

    Article  CAS  Google Scholar 

  • Courtney RG, Mullen GJ (2008) Soil quality and barley growth as influenced by the land application of two compost types. Bioresour Technol 99:2913–2918

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Fan Y, Yang J, Xu L, Zhou J, Zhu Z (2016) In situ phytoextraction of copper and cadmium and its biological impacts in acidic soil. Chemosphere 161:233–241

    Article  CAS  PubMed  Google Scholar 

  • Dai Z, Hu J, Xu X, Zhang L, Brookes PC, He Y, Xu J (2016) Sensitive responders among bacterial and fungal microbiome to pyrogenic organic matter (biochar) addition differed greatly between rhizosphere and bulk soils. Sci Rep 6:36101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimkpa CO, Svatos A, Dabrowska P, Schmidt A, Boland W, Kothe E (2009) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25

    Article  CAS  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elouear Z, Bouhamed F, Boujelben N, Bouzid J (2016) Application of sheep manure and potassium fertilizer to contaminated soil and its effect on zinc, cadmium and lead accumulation by alfalfa plants. Sustain Environ R 26:131–135

    Article  CAS  Google Scholar 

  • Epelde L, Becerril JM, Mijangos I, Garbisu C (2009) Evaluation of the efficiency of a phytostabilization process with biological indicators of soil health. J Environ Qual 38:2041–2049

    Article  CAS  PubMed  Google Scholar 

  • Epelde L, Becerril JM, Alkorta I, Garbisu C (2014) Adaptive long-term monitoring of soil health in metal phytostabilization: ecological attributes and ecosystem services based on soil microbial parameters. Int J Phytoremediation 16:971–981

    Article  PubMed  Google Scholar 

  • Fan M, Xiao X, Guo Y, Zhang J, Wang E, Chen W, Lin Y, Wei G (2018) Enhanced phytoremediation of Robinia pseudoacacia in heavy metal-contaminated soils with rhizobia and the associated bacterial community structure and function. Chemosphere 197:729–740

    Article  CAS  PubMed  Google Scholar 

  • Fellet G, Marmiroli M, Marchiol L (2014) Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar. Sci Total Environ 468-469:598–608

    Article  CAS  PubMed  Google Scholar 

  • Fidel RB, Laird DA, Thompson ML, Lawrinenko M (2017) Characterization and quantification of biochar alkalinity. Chemosphere 167:367–373

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Bradford M, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  • Golinska P, Dahm H (2011) Enzymatic activity of actinomycetes from the genus Streptomyces isolated from the bulk soil and rhizosphere of the Pinus sylvestris. Dendrobiology 65:37–46

    CAS  Google Scholar 

  • Gómezsagasti MT, Alkorta I, Becerril JM, Epelde L, Anza M, Garbis C (2012) Microbial monitoring of the recovery of soil quality during heavy metal phytoremediation. Water Air Soil Poll 223:3249–3262

    Article  CAS  Google Scholar 

  • Gong X, Huang D, Liu Y, Zeng G, Chen S, Wang R, Xu P, Cheng M, Zhang C, Xue W (2019) Biochar facilitated the phytoremediation of cadmium contaminated sediments: metal behavior, plant toxicity, and microbial activity. Sci Total Environ 666:1126–1133

    Article  CAS  PubMed  Google Scholar 

  • Gregorich EG, Carter MR, Angers DA, Monreal CM, Ellert BH (1994) Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can J Soil Sci 74:367–385

    Article  CAS  Google Scholar 

  • Gregory SJ, Anderson CWN, Arbestain MC, Mcmanus MT (2014) Response of plant and soil microbes to biochar amendment of an arsenic-contaminated soil. Agric Ecosyst Environ 191:133–141

    Article  CAS  Google Scholar 

  • Gremion F, Chatzinotas A, Harms H (2003) Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environ Microbiol 5:896–907

    Article  CAS  PubMed  Google Scholar 

  • Guan SY (1986) Soil enzymes and its methodology. Agricultural Press, Beijing (in Chinese)

    Google Scholar 

  • Har-Peled S, Sharir M, Varadarajan KR (2015) The effects of biochar and compostamendments on copper immobilization and soil microorganisms in a temperate vineyard. Agric Ecosyst Environ 201:58–69

    Article  CAS  Google Scholar 

  • Hou D, Wang K, Liu T, Wang H, Lin Z, Qian J, Lu L, Tian S (2017a) Unique rhizosphere micro-characteristics facilitate phytoextraction of multiple metals in soil by the hyperaccumulating plant Sedum alfredii. Environ Sci Technol 51:5675–5684

    Article  CAS  PubMed  Google Scholar 

  • Hou J, Liu W, Wu L, Hu P, Ma T, Luo Y, Christie P (2017b) Modulation of the efficiency of trace metal phytoremediation by Sedum plumbizincicola, by microbial community structure and function. Plant Soil 421:1–15

    Article  CAS  Google Scholar 

  • Houben D, Sonnet P (2015) Impact of biochar and root-induced changes on metal dynamics in the rhizosphere of Agrostis capillaris and Lupinus albus. Chemosphere 139:644–651

    Article  CAS  PubMed  Google Scholar 

  • Huang XF, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267–275

    Article  Google Scholar 

  • Jones D, Willett V (2006) Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol Biochem 38:991–999

    Article  CAS  Google Scholar 

  • Juan LI, Li YT, Yang XD, Zhang JJ, Lin ZA, Zhao BQ (2015) Microbial community structure and functional metabolic diversity are associated with organic carbon availability in an agricultural soil. J Integr Agr 14:2500–2511

    Article  CAS  Google Scholar 

  • Kang SM, Khan AL, Hamayun M, Hussain J, Joo GJ, You YH, Kim JG, Lee IJ (2012) Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones. J Microbiol 50:902–909

    Article  CAS  PubMed  Google Scholar 

  • Kim BY, Kshetrimayum JD, Goodfellow M (2011) Detection, selective isolation and characterisation of Dactylosporangium strains from diverse environmental samples. Syst Appl Microbiol 34:606–616

    Article  PubMed  Google Scholar 

  • Kramer C, Gleixner G (2008) Soil organic matter in soil depth profiles: distinct carbon preferences of microbial groups during carbon transformation. Soil Biol Biochem 40:425–433

    Article  CAS  Google Scholar 

  • Lee JS, Lee KC, Kim KK, Lee B (2016) Complete genome sequence of the Variibacter gotjawalensis GJW-30T from soil of lava forest, Gotjawal. J Biotechnol 218:64–65

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Wu L, Hu P, Luo Y, Zhang H, Christie P (2014) Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola. Environ Pollut 189:176–183

    Article  CAS  PubMed  Google Scholar 

  • Liang S, Jin Y, Liu W, Li X, Shen S, Ding L (2017) Feasibility of Pb phytoextraction using nano-materials assisted ryegrass: results of a one-year field-scale experiment. J Environ Manag 190:170–175

    Article  CAS  Google Scholar 

  • Lou Z, Sun Y, Bian S, Ali BS, Hu B, Xu X (2017) Nutrient conservation during spent mushroom compost application using spent mushroom substrate derived biochar. Chemosphere 169:23–31

    Article  CAS  PubMed  Google Scholar 

  • Lu KP, Yang X, Shen JJ, Robinson B, Huang HG, Liu D, Bolan N, Pei JC, Wang HL (2014) Effect of bamboo and rice straw biochars on the bioavailability of cd, cu, Pb and Zn to Sedum plumbizincicola. Agric Ecosyst Environ 191:124–132

    Article  CAS  Google Scholar 

  • Marin-Benito JM, Rodriguez-Cruz MS, Andrades MS (2009) Effect of spent mushroom substrate amendment of vineyard soils on the behavior of fungicides: 2. Mobility of penconazole and metalaxyl in undisturbed soil cores. J Agr Food Chem 57:9643–9650

    Article  CAS  Google Scholar 

  • Medina E, Paredes C, Bustamante MA, Moral R, Moreno-Caselles J (2012) Relationships between soil physico-chemical, chemical and biological properties in a soil amended with spent mushroom substrate. Geoderma 173-174:152–161

    Article  CAS  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology. Environ Health Persp 116:278–283

    Article  CAS  Google Scholar 

  • Mitchell PJ, Simpson AJ, Soong R, Simpson MJ (2015) Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil. Soil Biol Biochem 81:244–254

    Article  CAS  Google Scholar 

  • Moameri M, Khalaki MA (2017) Capability of Secale montanum, trusted for phytoremediation of lead and cadmium in soils amended with nano-silica and municipal solid waste compost. Environ Sci Pollut R 3:1–8

    Google Scholar 

  • Mohamed BA, Ellis N, Kim CS, Bi X (2017) The role of tailored biochar in increasing plant growth, and reducing bioavailability, phytotoxicity, and uptake of heavy metals in contaminated soil. Environ Pollut 230:329–338

    Article  CAS  PubMed  Google Scholar 

  • Nie C, Yang X, Niazi NK, Xu X, Wen Y, Rinklebe J, Yong SO, Xu S, Wang H (2018) Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: a field study. Chemosphere 200:274–282

    Article  CAS  PubMed  Google Scholar 

  • Paula FS, Tatti E, Abram F, Wilson J, O'Flaherty V (2017) Stabilisation of spent mushroom substrate for application as a plant growth-promoting organic amendment. J Environ Manage 196:476–486

    Article  CAS  PubMed  Google Scholar 

  • Peregrina F, Larrieta C, Colina M, Mariscalsancho I, Martín I, Martínezvidaurre JM, García-Escudero E (2012) Spent mushroom substrates influence soil quality and nitrogen availability in a semiarid vineyard soil. Soil Sci Soc Am J 76:1655–1666

    Article  CAS  Google Scholar 

  • Pratas J, Favas PJ, D'Souza R, Varun M, Paul MS (2013) Phytoremedial assessment of flora tolerant to heavy metals in the contaminated soils of an abandoned Pb mine in Central Portugal. Chemosphere 90:2216–2225

    Article  CAS  PubMed  Google Scholar 

  • Pudjiraharti S, Takesue N, Katayama T, Lisdiyanti P, Hanafi M, Tanaka M, Sone T, Asano K (2011) Actinomycete Nonomuraea sp. isolated from Indonesian soil is a new producer of inulin fructotransferase. J Biosci Bioeng 111:671–674

    Article  CAS  PubMed  Google Scholar 

  • Rajput R, Prasad G, Chopra AK (2009) Scenario of solid waste management in present Indian context. Caspian J Env Sci 7:45–53

    Google Scholar 

  • Rees F, Germain C, Sterckeman T, Morel JL (2015) Plant growth and metal uptake by a non-hyperaccumulating species (Lolium perenne) and a Cd-Zn hyperaccumulator (Noccaea caerulescens) in contaminated soils amended with biochar. Plant Soil 395:57–73

    Article  CAS  Google Scholar 

  • Rodríguez-Vila A, Asensio V, Forján R, Covelo EF (2016) Assessing the influence of technosol and biochar amendments combined with Brassica juncea L. on the fractionation of cu, Ni, Pb and Zn in a polluted mine soil. J Soils Sediments 16:339–348

    Article  CAS  Google Scholar 

  • Rue M, Rees F, Simonnot MO, Morel JL (2019) Phytoextraction of Ni from a toxic industrial sludge amended with biochar. J Geochem Explor 196:173–181

    Article  CAS  Google Scholar 

  • Schellenberger S, Kolb S, Drake HL (2010) Metabolic responses of novel cellulolytic and saccharolytic agricultural soil bacteria to oxygen. Environ Microbiol 12:845–861

    Article  CAS  PubMed  Google Scholar 

  • Steffen KL, Dann MS, Fager K, Fleischer SJ, Harper JK (1994) Short-term and long-term impact of an initial large-scale SMS soil amendment on vegetable crop productivity and resource use efficiency. Compost Sci Util 2:75–83

    Article  Google Scholar 

  • Stewart DPC, Cameron KC, Cornforth IS, Stewart DPC, Cameron KC, Cornforth IS (1998) Effects of spent mushroom substrate on soil chemical conditions and plant growth in an intensive horticultural system: a comparison with inorganic fertilizer. Soil Res 36:185–198

    Article  Google Scholar 

  • Tan Z, Lin CS, Ji X, Rainey TJ (2017) Returning biochar to fields: a review. Appl Soil Ecol 116:1–11

    Article  Google Scholar 

  • Tan X, Machmuller MB, Wang Z, Li X, He W, Cotrufo MF, Shen W (2018) Temperature enhances the affinity of soil alkaline phosphatase to cd. Chemosphere 196:214–222

    Article  CAS  PubMed  Google Scholar 

  • Trivedi P, Anderson IC, Singh BK (2013) Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends Microbiol 21:641–651

    Article  CAS  PubMed  Google Scholar 

  • Van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  CAS  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Vogeler I, Vachey A, Deurer M, Bolan N (2008) Impact of plants on the microbial activity in soils with high and low levels of copper. Eur J Soil Biol 44:92–100

    Article  CAS  Google Scholar 

  • Volchko Y, Norrman J, Rosén L, Bergknut M, Josefsson S, Söderqvist T, Norberg T, WibergK TM (2014) Using soil function evaluation in multi-criteria decision analysis for sustainability appraisal of remediation alternatives. Sci Total Environ 485-486:785–791

    Article  CAS  PubMed  Google Scholar 

  • Wood JL, Tang C, Franks AE (2016) Microbial associated plant growth and heavy metal accumulation to improve phytoextraction of contaminated soils. Soil Biol Biochem 103:131–137

    Article  CAS  Google Scholar 

  • Wu L, Li Z, Akahane I, Liu L, Han CL, Makino T, Luo Y, Christie P (2012) Effects of organic amendments on cd, Zn and cu bioavailability in soil with repeated phytoremediation by Sedum plumbizincicola. Int J Phytoremediat 14:1024–1038

    Article  CAS  Google Scholar 

  • Wu C, Shi L, Xue S, Li W, Jiang X, Rajendran M, Qian Z (2019) Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils. Sci Total Environ 647:1158–1168

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Xia H, Wu J, Yang G, Zhang X, Peng H, Qi H (2017) Shifts in the relative abundance of bacteria after wine-lees-derived biochar intervention in multi metal-contaminated paddy soil. Sci Total Environ 599:1297–1307

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Long XX, Ni WZ, Fu CX (2002) Sedum alfredii H: a new Zn hyperaccumulating plant first found in China. Chin Sci Bull 47:1634–1637

    Article  CAS  Google Scholar 

  • Yang W, Li H, Zhang T, Lin S, Ni W (2014) Classification and identification of metal-accumulating plant species by cluster analysis. Environ Sci Poll R 21:10626–10637

    Article  CAS  Google Scholar 

  • Zhang RH, Duan ZQ, Li ZG (2012) Use of spent mushroom substrate as growing media for tomato and cucumber seedlings. Pedosphere 22:333–342

    Article  CAS  Google Scholar 

  • Zhang C, Clark GJ, Patti AF, Bolan N, Cheng M, Sale PW, Tang C (2015) Contrasting effects of organic amendments on phytoextraction of heavy metals in a contaminated sediment. Plant Soil 397:331–345

    Article  CAS  Google Scholar 

  • Zhang C, Mora P, Dai J, Chen X, Giusti-Miller S, Ruiz-Camacho N, Velasquez E, Lavelle P (2016) Earthworm and organic amendment effects on microbial activities and metal availability in a contaminated soil from China. Appl Soil Ecol 104:54–66

    Article  Google Scholar 

  • Zhao X, Huang J, Lu J, Sun Y (2019) Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine. Ecotox Environ Safe 170:218–226

    Article  CAS  Google Scholar 

  • Zheng J, Chen J, Pan G, Liu X, Zhang X, Li L, Bian R, Cheng K, Zheng J (2016) Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from Southwest China. Sci Total Environ 571:206–217

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Foundation for Distinguished Young Scholars of Fujian Agriculture and Forestry University (Nos. XJQ201628) and the Major Scientific and Technological Projects of Fujian Province (2017NZ0001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher Rensing or Shihe Xing.

Additional information

Responsible Editor: Antony Van der Ent.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Wang, S., Ni, W. et al. Enhanced Cd-Zn-Pb-contaminated soil phytoextraction by Sedum alfredii and the rhizosphere bacterial community structure and function by applying organic amendments. Plant Soil 444, 101–118 (2019). https://doi.org/10.1007/s11104-019-04256-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04256-x

Keywords

Navigation