Carbon content and pH as important drivers of fungal community structure in three Amazon forests

Abstract

Background and aims

Amazonia comprises a mosaic of ecosystems that harbor high biodiversity. Knowledge about fungal diversity and ecology in this region remains very limited. Here, we examine soil fungal communities in forests of the Colombian Amazonia and their relationship to important edaphic variables.

Methods

Fungal communities were studied in terra-firme forests dominated by arbuscular mycorrhizal (AM) trees, terra-firme forests with the ectomycorrhizal (EcM) tree Pseudomonotes tropenbosii (Dipterocarpaceae), and white sand forests (WSF) with the EcM host plant genera Dicymbe and Aldina (Fabaceae). Fungal community composition was determined through 454-pyrosequencing of the ITS2 region of ribosomal DNA. We established the impact of the type of forest and edaphic parameters in structuring the fungal communities.

Results

We found a high diversity of fungi with 2,507 OTUs occurring in the soil samples studied. Carbon content and pH were the main edaphic factors contributing to structure the fungal community across all forests. Fungal community composition differs among terra-firme plots and WSF, while it was similar among AM and EcM-dominated areas in terra-firme. Our results revealed an important EcM fungal diversity in terra-firme AM-forests, where some EcM plants such as the ones in the genera Coccoloba and Neea occur scattered within an AM-matrix.

Conclusions

This is a first approximation to understand the ecology of soil fungal communities in forests of the Colombian Amazonia. We found that fungal soil communities have a spatial variation related to forest type (terra-firme and WSF), soil pH, and soil carbon content. Due to the strong correlation between vegetation and soil fertility in Amazonia, it is difficult to understand the effects of those factors to the fungal communities.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Augspurger CK (1983) Seed dispersal of the tropical tree, Platypodium elegans, and the escape of its seedlings from fungal pathogens. J Ecol 71:759–771. https://doi.org/10.2307/2259591

    Article  Google Scholar 

  2. Averill C, Turner BL, Finzi AC (2014) Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505:543–545. https://doi.org/10.1038/nature12901

    CAS  Article  PubMed  Google Scholar 

  3. Baas-Becking LG (1934) Geobiologie; of inleiding tot de milieukunde. WP Van Stockum Zoon NV, The Hague

    Google Scholar 

  4. Bahram M, Peay KG, Tedersoo L (2015) Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. New Phytol 205:1454–1463. https://doi.org/10.1111/nph.13206

    CAS  Article  PubMed  Google Scholar 

  5. Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, Bengtsson-Palme J, Anslan S, Coelho LP, Harend H, Huerta-Cepas J (2018) Structure and function of the global topsoil microbiome. Nature 560:233–237. https://doi.org/10.1038/s41586-018-0386-6

    CAS  Article  PubMed  Google Scholar 

  6. Bálint M, Bahram M, Eren AM, Faust K, Fuhrman JA, Lindahl B, O'hara RB, Öpik M, Sogin ML, Unterseher M, Tedersoo L (2016) Millions of reads, thousands of taxa: microbial community structure and associations analyzed via marker genes. FEMS Microbiol Rev 29:686–700. https://doi.org/10.1093/femsre/fuw017

    CAS  Article  Google Scholar 

  7. Bragg L, Stone G, Imelfort M, Hugenholtz P, Tyson G.W (2012) Fast, accurate error-correction of amplicon pyrosequences using Acacia. Nat Methods 9: 425–426. doi: https://doi.org/10.1038/nmeth.1990

  8. Brearley FQ (2012) Ectomycorrhizal associations of the Dipterocarpaceae. Biotropica 44:637–648. https://doi.org/10.1111/j.1744-7429.2012.00862.x

    Article  Google Scholar 

  9. Bunn RA, Simpson DT, Bullington LS, Lekberg Y, Janos DP (2019) Revisiting the ‘direct mineral cycling’hypothesis: arbuscular mycorrhizal fungi colonize leaf litter, but why? The ISME journal 1

  10. Burns JH, Anacker BL, Strauss SY, Burke DJ (2015) Soil microbial community variation correlates most strongly with plant species identity, followed by soil chemistry, spatial location and plant genus. AoB Plants 7. https://doi.org/10.1093/aobpla/plv030

  11. Camenzind T, Hempel S, Homeier J, Horn S, Velescu A, Wilcke W, Rillig MC (2014) Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Glob Chang Biol 20:3646–3659. https://doi.org/10.1111/gcb.12618

  12. Cannon PF, Kirk PM (2007) Fungal families of the world. CABI, England

    Google Scholar 

  13. Comita LS, Muller-Landau HC, Aguilar S, Hubbell SP (2010) Asymmetric density dependence shapes species abundances in a tropical tree community. Science 329:330–332

    CAS  Article  Google Scholar 

  14. Corrales A, Turner BL, Tedersoo L, Anslan S, Dalling JW (2017) Nitrogen addition alters ectomycorrhizal fungal communities and soil enzyme activities in a tropical montane forest. Fun Ecol 27:14–23. https://doi.org/10.1016/j.funeco.2017.02.004

  15. Corrales A, Mangan SA, Turner BL, Dalling JW (2016) An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest. Ecol Lett 19:383–392. https://doi.org/10.1111/ele.12570

    Article  PubMed  Google Scholar 

  16. Corrales A, Henkel TW, Smith ME (2018) Ectomycorrhizal associations in the tropics–biogeography, diversity patterns and ecosystem roles. New Phytol 220:1076–1109. https://doi.org/10.1111/nph.15151

    Article  Google Scholar 

  17. Duivenvoorden JF, Duque A (2010) Composition and diversity of northwestern Amazonian rainforests in a geoecological context. In: Hoorn C, Wesselingh FP (eds) Amazonia, landscape and species evolution: a look into the past. Blackwell Publishing, West Sussex, pp 360–372

    Google Scholar 

  18. Duivenvoorden JF, Lips JM (1993) Landscape ecology of the middle Caquetá basin; explanatory notes to the maps. Tropenbos, Colombia

    Google Scholar 

  19. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    CAS  Article  PubMed  Google Scholar 

  20. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Estrada-Peña A, Cabezas-Cruz A, Pollet T, Vayssier-Taussat M, Cosson JF (2018) High throughput sequencing and network analysis disentangle the microbial communities of ticks and hosts within and between ecosystems. Front Cell Infect Mi 8:1–12. https://doi.org/10.3389/fcimb.2018.00236

    CAS  Article  Google Scholar 

  22. Eva HD, Glinni A, Janvier P, Blair-Myers C (1999) Vegetation map of tropical South America. TREES Publications Series D, Luxembourg

    Google Scholar 

  23. Fearnside PM (2005) Deforestation in Brazilian Amazonia: history, rates, and consequences. Conserv Biol 19:680–688. https://doi.org/10.1111/j.1523-1739.2005.00697.x

    Article  Google Scholar 

  24. Fine PV, Baraloto C (2016) Habitat endemism in white-sand forests: insights into the mechanisms of lineage diversification and Community assembly of the Neotropical Flora. Biotropica 48:24–33. https://doi.org/10.1111/btp.12301

    Article  Google Scholar 

  25. Fine PV, Garcia–Villacorta R, NCA P, Mesones I, Kembel SW (2010) A floristic study of the white sand forest of Peru. Ann Missouri Bot Gard 97:283–305. https://doi.org/10.3417/2008068

    Article  Google Scholar 

  26. Finlay RD (1995) Interactions between soil acidification, plant growth and nutrient uptake in ectomycorrhizal associations of forest trees. Ecol Bull 1:197–214

    Google Scholar 

  27. Frąc M, Hannula SE, Bełka M, Jędryczka M (2018) Fungal biodiversity and their role in soil health. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.00707

  28. Fukami T, Nakajima M, Fortunel C, Fine PV, Baraloto C, Russo SE, Peay KG (2017) Geographical variation in community divergence: insights from tropical forest monodominance by ectomycorrhizal trees. Am Nat 190:S105–S122. https://doi.org/10.1086/692439

    Article  PubMed  Google Scholar 

  29. Geml J, Pastor N, Fernandez L, Pacheco S, Semenova TA, Becerra AG, Nouhra ER (2014) Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Mol Ecol 23:2452–2472. https://doi.org/10.1111/mec.12765

    CAS  Article  PubMed  Google Scholar 

  30. Gentry AH (1988) Tree species richness of upper Amazonian forests. Proc Natl Acad Sci 85:156–159. https://doi.org/10.1073/pnas.85.1.156

    CAS  Article  PubMed  Google Scholar 

  31. Gilbert GS, Webb CO (2007) Phylogenetic signal in plant pathogen-host range. Proc Natl Acad Sci 104:4979–4983. https://doi.org/10.1073/pnas.0607968104

    CAS  Article  PubMed  Google Scholar 

  32. Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19. https://doi.org/10.18637/jss.v022.i07

    Article  Google Scholar 

  33. Grupe AC, Vasco-Palacios AM, Smith ME, Boekhout T, Henkel TW (2016) Sarcodon in the Neotropics II: four new species from Colombia and a key to the regional species. Mycologia 108:791–805. https://doi.org/10.3852/15-254

    CAS  Article  PubMed  Google Scholar 

  34. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JB (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10:497–506. https://doi.org/10.1038/nrmicro2795

    CAS  Article  PubMed  Google Scholar 

  35. Henkel TW, Terborgh J, Vilgalys RJ (2002) Ectomycorrhizal fungi and their leguminous hosts in the Pakaraima Mountains of Guyana. Mycol Res 106:515–531. https://doi.org/10.1017/s0953756202005919

    Article  Google Scholar 

  36. Henkel TW, Aime MC, Chin MML, Miller SL, Vilgalys R, Smith ME (2012) Ectomycorrhizal fungal sporocarp diversity and discovery of new taxa in Dicymbe monodominant forests of the Guiana shield. Biodivers Conserv 21:2195–2220. https://doi.org/10.1007/s10531-011-0166-1

    Article  Google Scholar 

  37. Hobbie EA, Högberg P (2012) Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytol 196:367–382. https://doi.org/10.1111/j.1469-8137.2012.04300.x

    CAS  Article  PubMed  Google Scholar 

  38. Högberg MN, Högberg P, Myrold DD (2007) Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia 150:590–601. https://doi.org/10.1007/s00442-006-0562-5

    Article  PubMed  Google Scholar 

  39. Hoorn C, Wesselingh FP (2010) Introduction: Amazonia, landscapes and species evolution. In: Hoorn C, Wesselingh FP (eds) Amazonia, landscape and species evolution: a look into the past. Blackwell Publishing, West Sussex, pp 1–6

    Google Scholar 

  40. Hoorn C, Wesselingh FP, Ter Steege H, Bermudez MA, Mora A, Sevink J, Antonelli A (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931. https://doi.org/10.1126/science.1194585

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Houbraken J, López-Quintero C, Frisvad JC, Boekhout T, Theelen B, Franco-Molano AE, Samson RA (2011) Five new Penicillium species, P. araracuaraense, P. ellenii, P. penarojaense, P. vanderhammenii and P. wotroi, from Colombian leaf litter. Int J Syst Evol Microbiol 61:1462–1475. https://doi.org/10.1099/ijs.0.025098-0

    Article  PubMed  Google Scholar 

  42. Hughes KW, Petersen RH, Lickey EB (2009) Using heterozygosity to estimate a percentage DNA sequence similarity for environmental species’ delimitation across basidiomycete fungi. New Phytol 182:795–798. https://doi.org/10.1111/j.1469-8137.2009.02802.x

    CAS  Article  PubMed  Google Scholar 

  43. IGAC (2003) Mapa Digital Integrado fisico politico departamento del Amazonas. Instituto Geografico Agustin Codazzi

  44. Jiménez EM, Moreno FH, Peñuela MC, Patiño S, Lloyd J (2009) Fine root dynamics for forests on contrasting soils in the Colombian Amazon. Biogeosciences 6:2809–2827. https://doi.org/10.5194/bg-6-2809-2009

    Article  Google Scholar 

  45. Jiménez EM, Peñuela-Mora MC, Sierra CA, Lloyd J, Phillips OL, Moreno FH, Navarrete D, Prieto A, Rudas A, Álvarez E, Quesada CA, Grande-Ortíz MA, García-Abril A, Patiño S (2014) Edaphic controls on ecosystem-level carbon allocation in two contrasting Amazon forests. J Geophys Res Biogeosci 119:1820–1830. https://doi.org/10.1002/2014jg002653

    Article  Google Scholar 

  46. Lee J, Lee S, Young JP (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbio Ecol 65:339–349. https://doi.org/10.1111/j.1574-6941.2008.00531.x

    CAS  Article  Google Scholar 

  47. Lindahl BD, Tunlid A (2015) Ectomycorrhizal fungi–potential organic matter decomposers, yet not saprotrophs. New Phytol 205:1443–1447. https://doi.org/10.1111/nph.13201

  48. Lindahl BD, Nilsson RH, Tedersoo L et al (2013) Fungal community analysis by high-throughput sequencing of amplified markers – a user’s guide. New Phytol 199:288–299. https://doi.org/10.1111/nph.12243

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Lips J, Duivenvoorden J (1996) Fine litter input to terrestrial humus forms in Colombian Amazonia. Oecologia 108:138–150. https://doi.org/10.1007/bf00333225

    Article  PubMed  Google Scholar 

  50. Looney BP, Ryberg M, Hampe F, Sánchez-García M, Matheny PB (2016) Into and out of the tropics: global diversification patterns in a hyperdiverse clade of ectomycorrhizal fungi. Mol Ecol 25:630–647. https://doi.org/10.1111/mec.13506

    Article  PubMed  Google Scholar 

  51. López-Quintero CA, Straatsma G, Franco-Molano AE, Boekhout T (2012) Macrofungal diversity in Colombian Amazon forests varies with regions and regimes of disturbance. Biodivers Conserv 21:2221–2243. https://doi.org/10.1007/s10531-012-0280-8

    Article  Google Scholar 

  52. López-Quintero CA, Atanasova L, Franco-Molano AE, Gams W, Komon-Zelazowska M, Theelen B, Müller WH, Boekhout T, Druzhinina I (2013) DNA barcoding survey of Trichoderma diversity in soil and litter of the Colombian Amazonian rainforest reveals Trichoderma strigosellum sp.nov. and other species. Antonie Van Leeuwenhoek 104:657–674. https://doi.org/10.1007/s10482-013-9975-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Lucheta AR, de Souza C, Roesch LFW, Tsai SM, Kuramae EE (2016) Fungal Community assembly in the Amazonian dark earth. Microb Ecol 71:962–973. https://doi.org/10.1007/s00248-015-0703-7

    CAS  Article  PubMed  Google Scholar 

  54. Lucheta AR, de Souza C, Tsai SM, Kuramae EE (2017) Amazonian dark earth and its black carbon Particles Harbor different fungal abundance and diversity. Pedosphere 27:832–845. https://doi.org/10.1016/s1002-0160(17)60415-6

    Article  Google Scholar 

  55. Matheny PB, Aime MC, Bougher NL, Buyck B, Desjardin DE, Horak E, Kropp BR, Logde DJ, Soytong K, Trappe JM, Hibbett DS (2009) Out of the Palaeotropics? Historical biogeography and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae. J Biogeogr 36:577–592. https://doi.org/10.1111/j.1365-2699.2008.02055.x

    Article  Google Scholar 

  56. Mayor J, Bahram M, Henkel TW, Buegger F, Pritsch K, Tedersoo L (2015) Ectomycorrhizal impacts on plant nitrogen nutrition: emerging isotopic patterns, latitudinal variation and hidden mechanisms. Ecol Lett 18:96–107. https://doi.org/10.1111/ele.12377

    Article  PubMed  Google Scholar 

  57. McGuire KL (2007) Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology 88:567–574

    Article  Google Scholar 

  58. McGuire KL, Zak DR, Edwards IP, Blackwood CB, Upchurch R (2010) Slowed decomposition is biotically mediated in an ectomycorrhizal, tropical rain forest. Oecologia 164:785–795. https://doi.org/10.1007/s00442-010-1686-1

    Article  PubMed  PubMed Central  Google Scholar 

  59. McGuire KL, Fierer N, Bateman C, Treseder KK, Turner BL (2012) Fungal community composition in Neotropical rain forests: the influence of tree diversity and precipitation. Microb Ecol 63:804–812. https://doi.org/10.1007/s00248-011-9973-x

    Article  PubMed  Google Scholar 

  60. Moyersoen B (2006) Pakaraimaea dipterocarpacea is ectomycorrhizal, indicating an ancient Gondwanaland origin for the ectomycorrhizal habit in Dipterocarpaceae. New Phytol 172:753–762. https://doi.org/10.1111/j.1469-8137.2006.01860.x

    Article  PubMed  Google Scholar 

  61. Moyersoen B, Weiß M (2014) New neotropical Sebacinales species from a Pakaraimaea dipterocarpacea forest in the Guayana region, southern Venezuela: structural diversity and phylogeography. PLoS ONE 9: e107078. https://doi.org/10.1371/journal.pone.0103076

  62. Mueller RC, Paula FS, Mirza BS, Rodrigues JL, Nüsslein K, Bohannan BJ (2014) Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest. ISME J 8:1548–1550. https://doi.org/10.1038/ismej.2013.253

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Mueller RC, Rodrigues JL, Nüsslein K, Bohannan BJ (2016) Land use change in the Amazon rain forest favours generalist fungi. Funct Ecol 30:1845–1853. https://doi.org/10.1111/1365-2435.12651

    Article  Google Scholar 

  64. Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley and Sons, New York

    Google Scholar 

  65. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Wagner H (2013) Package ‘vegan’. R Packag ver 254:20–28

    Google Scholar 

  66. Orwin K, Kirschbaum M, St. John M, Dickie I (2011) Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecol Lett 14:493–502. doi:10.1111/j.1461-0248.2011.01611.x

  67. Parrado-Rosseli A (2005) Fruit availability and seed dispersal in terra-firme forest of Colombian Amazonia. Wageningen, Tropenbos-International

    Google Scholar 

  68. Paula FS, Rodrigues JL, Zhou J, Wu L, Mueller RC, Mirza BS, Bohannan BJ, Nüsslein K, Deng Y, Tiedje JM, Pellizari VH (2014) Land use change alters functional gene diversity, composition and abundance in Amazon forest soil microbial communities. Mol Ecol 23:2988–2999. https://doi.org/10.1111/mec.12786

    Article  PubMed  Google Scholar 

  69. Peay KG, Baraloto C, Fine PV (2013) Strong coupling of plant and fungal community structure across western Amazonian rainforests. ISME J 7:1852–1861. https://doi.org/10.1038/ismej.2013.66

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Peña-Venegas C, Vasco-Palacios AM (2019) Endo- and Ectomycorrhizas in tropical ecosystems of Colombia. In: Pagano M, Lugo M (eds) Mycorrhizal Fungi in South America. Fungal Biology. Springer, Cham, pp 111–146. https://doi.org/10.1007/978-3-030-15228-4_6

    Google Scholar 

  71. Peñuela-Mora MC (2014) Understanding Colombian Amazonian white sand Forest. Dissertation. Utrecht University, Bogota D.C.

  72. Quesada CA, Lloyd J, Anderson LO, Fyllas NM, Schwarz M, Czimczik CI (2011) Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences 8: 1415–1440. https://doi.org/10.5194/bg-8-1415-2011

  73. Quesada CA, Lloyd J, Schwarz M, Baker TR, Phillips OL, Patiño S, Ramírez H (2009) Regional and large-scale patterns in Amazon forest structure and function are mediated by variations in soil physical and chemical properties. Biogeosci Discuss 6:3993–4057. https://doi.org/10.5194/bgd-6-3993-2009

    Article  Google Scholar 

  74. Quesada CA, Phillips OL, Schwarz M, Czimczik CI, Baker TR, Patiño S, Fyllas NM, Hodnett MG, Herrera R, Almeida S, Dávila EA (2012) Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9:2203–2246

    Article  Google Scholar 

  75. R Core Team (2014). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org

  76. Rosling A, Cox F, Cruz-Martinez K, Ihrmark K, Grelet GA, Lindahl BD, James TY (2011) Archaeorhizomycetes: unearthing an ancient class of ubiquitous soil fungi. Science 333:876–879. https://doi.org/10.1126/science.1206958

    CAS  Article  PubMed  Google Scholar 

  77. Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010)Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME J 4:1340–1351. https://doi.org/10.1038/ismej.2010.58

  78. Roy M, Schimann H, Braga-Neto R, Da Silva RAE, Duque J, Frame D, Wartchow F, Neves MA (2016) Diversity and distribution of ectomycorrhizal fungi from Amazonian lowland white-sand forests in Brazil and French Guiana. Biotropica 48:90–100. https://doi.org/10.1111/btp.12297

    Article  Google Scholar 

  79. Roy M, Vasco-Palacios AM, Geml J, Buyck B, Delgat L, Giachini A, Grebenc T, Harrower E, Kuhar F, Magnano A, Rinaldi AC, Schimann H, Selosse MA, Wartchow F, Neves MA (2017) The (re) discovery of ectomycorrhizal symbioses in Neotropical ecosystems sketched in Florianópolis. New Phytol 214:920–923. https://doi.org/10.1111/nph.14531

    Article  PubMed  Google Scholar 

  80. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/aem.01541-09

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. Simon L, Lalonde M, Bruns TD (1992) Specific amplification of 18S fungal ribosomal genes from VA endomycorrhizal fungi colonizing roots. Appl Environ Microbiol 58:291–295

    CAS  Article  Google Scholar 

  82. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. 3rd. Academic Press New York, p 815

  83. Smith ME, Henkel TW, Aime MC, Fremier AK, Vilgalys R (2011) Ectomycorrhizal fungal diversity and community structure on three co-occurring leguminous canopy tree species in a Neotropical rainforest. New Phytol 192: 699–712. doi https://doi.org/10.1111/j.1469-8137.2011.03844.x

  84. Smith ME, Henkel TW, Uehling JK, Fremier AK, Clarke HD, Vilgalys R (2013) The ectomycorrhizal fungal community in a Neotropical forest dominated by the endemic dipterocarp Pakaraimaea dipterocarpacea. PLoS One 8:e55160. https://doi.org/10.1371/journal.pone.0055160

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. Strickland MS, Rousk J (2010) Considering fungal: bacterial dominance in soils–methods, controls, and ecosystem implications. Soil Biol Biochem 42:1385–1395. https://doi.org/10.1016/j.soilbio.2010.05.007

    CAS  Article  Google Scholar 

  86. Sulzbacher MA, Grebenc T, Giachini AJ, Baseia IG, Nouhra ER (2017) Hypogeous sequestrate fungi in South America – how well do we know them? Symbiosis 71:9–17

    Article  Google Scholar 

  87. Talbot JM, Bruns TD, Taylor JW, Smith DP, Branco S, Glassman SI, Erlandson S, Vilgalys R, Liao HL, Smith ME, Peay KG (2014) Endemism and functional convergence across the north American soil mycobiome. Proc Natl Acad Sci U S A 111:6341–6346. https://doi.org/10.1073/pnas.1402584111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. Tedersoo L, Smith ME (2013) Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Bio Rev 27:83–99. https://doi.org/10.1016/j.fbr.2013.09.001

    Article  Google Scholar 

  89. Tedersoo L, May TW, Smith ME (2010a) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263. https://doi.org/10.1007/s00572-009-0274-x

    Article  PubMed  Google Scholar 

  90. Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Bahram M, Bechem E, Chuyong G, Koljalg U (2010b) 454-pyrosequencing and sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol 188:291–301. https://doi.org/10.1111/j.1469-8137.2010.03373.x

    CAS  Article  PubMed  Google Scholar 

  91. Tedersoo L, Sadam A, Zambrano M, Valencia R, Bahram M (2010c) Low diversity and high host preference of ectomycorrhizal fungi in Western Amazonia, a Neotropical biodiversity hotspot. ISME J 4:465–471. https://doi.org/10.1038/ismej.2009.131

    Article  PubMed  Google Scholar 

  92. Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Vasco-Palacios AM, De Kesel A et al (2014) Global diversity and geography of soil fungi. Science 346:4168–4183. https://doi.org/10.1111/mec.12849

    Article  Google Scholar 

  93. Tedersoo L, Bahram M, Puusepp R, Nilsson RH, James TY (2017) Novel soil-inhabiting clades fill gaps in the fungal tree of life. Microbiome 5:42. https://doi.org/10.1186/s40168-017-0259-5

    Article  PubMed  PubMed Central  Google Scholar 

  94. ter Steege H, ATDN, RAINFOR (2010) Contribution of current and historical processes to patterns of tree diversity and composition of the Amazon. In: Hoorn C, Vonhof H, Wesselingh F (eds) Amazonia, landscape and species evolution: a look into the past. Wiley-Blackwell, UK, Oxford, pp 349–359

  95. ter Steege H, Pitman NC, Phillips OL, Chave J, Sabatier D, Duque A, Molino JF, Prévost AMF, Spichiger R, Castellanos H, von Hildebrand P, Vásquez R (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443:444–447. https://doi.org/10.1038/nature05134

    CAS  Article  PubMed  Google Scholar 

  96. UNITE Community (2017): UNITE mothur release. Version 2016-08-22. https://unite.ut.ee/repository.php. Accessed 10 June 2017

  97. Van der Heijden MG, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423. https://doi.org/10.1111/nph.13288

    CAS  Article  PubMed  Google Scholar 

  98. Vasco-Palacios AM (2016) Ectomycorrhizal fungi in Amazonian tropical forests in Colombia (Doctoral dissertation, Utrecht University

  99. Vasco-Palacios AM, Hernández J, Peñuela-Mora MC, Franco-Molano AE, Boekhout T (2018) Ectomycorrhizal fungi diversity in a white sand forest in western Amazonia. Fungal Ecol 31:9–18. https://doi.org/10.1016/j.funeco.2017.10.003

    Article  Google Scholar 

  100. Verbruggen E, Pena R, Fernandez CW, Soong JL (2017) Mycorrhizal interactions with saprotrophs and impact on soil carbon storage. 441-460. In: Collins N, Gehring C and Jansa J. Mycorrhizal Mediation of Soil. Elsevier. https://doi.org/10.1016/B978-0-12-804312-7.00024-3

  101. Vu D, Groenewald M, Szöke S, Cardinali G, Eberhardt U, Stielow B, de Vries M, Verkleij GJ, Crous PW, Boekhout T, Robert V (2016) DNA barcoding analysis of more than 9 000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation. Stud Mycol 1:91–105

  102. Vu D, Groenewald M, de Vries M, Gehrmann T, Stielow B, Eberhardt U, Al-Hatmi A, Groenewald JZ, Cardinali G, Houbraken J, Boekhout T (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud Mycol 92:135–154. https://doi.org/10.1016/j.simyco.2016.11.007

    CAS  Article  PubMed  Google Scholar 

  103. Waring BG, Adams R, Branco S, Powers JS (2016) Scale-dependent variation in nitrogen cycling and soil fungal communities along gradients of forest composition and age in regenerating tropical dry forests. New Phytol 209:845–854. https://doi.org/10.1111/nph.13654

  104. Yilmaz N, López-Quintero CA, Vasco-Palacios AM, Frisvad J, Theelen B, Boekhout T, Samson R, Houbraken J (2016) Four novel Talaromyces species isolated from leaf litter from Colombian Amazon rain forests. Mycol Prog 10-11:1041–1056. https://doi.org/10.1007/s11557-016-1227-3

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by grants to Aida Vasco-Palacios from The Netherlands Fellowship Programmes (NFP) of the Netherlands organization for international cooperation in higher education (NUFFIC), The Faculty for the Future - Schlumberger Foundation (FFTF Grant 2011–2013), and The International Foundation of Science (IFS Grant D/5052–1, 2011-2-13f) and Utrecht University 2014-2015. We would also like to thank Miguel Arcangel and Eduardo Paki and his family for their advice on the forests; Maria Cristina Peñuela for her contributions to the knowledge of white-sand forests in Colombia and for facilitating our work in the biological station El Zafire, and the Laboratorio TEHO of la Universidad de Antioquia. To Wilson López for his support and advice with the statistical analysis in R and to Diego Fernando Ramírez Guerrero for his valuable comments, which helped to improve the manuscript. Research permission for this study was number 07, 01-March-2012 (Autoridad Nacional de Licencias Ambientales, ANLA-Colombia). Access to genetic resources for scientific research contract, with non-commercial interest No 73, 21 May 2013 (Ministerio de Ambiente y Desarrollo Sostenible, MADS-Colombia).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aída M. Vasco-Palacios.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Bernardo M Flores.

Electronic supplementary material

Fig. 1
figure6

a Differences in species richness between AMF, PtF, and WSF in Colombia. Species richness residuals and standard deviation of species richness recovered from rainforest soils in the Amazon region in Colombia. The internal black bar within the boxes is the standard deviation. The external bars indicate the lowest and highest data of species richness. b Differences in species richness of EcM fungi between AMF, PtF, and WSF in Colombia (PNG 32 kb)

Fig. 2
figure7

Cluster analysis showing similarity values of the fungal community compositions between plots based on the Jaccard index. Scale 0–1, with 1 indicating maximal similarity. Color brown represents plots from WSFs, green from PtFs and orange from AMFs. Plots were established in three localities, the biological station El Zafire in red color, and in the Middle Caquetá region, the localities of Peña Roja (PR) in blue color and Puerto Santander (PS) in violet color (PNG 305 kb)

High Resolution (TIF 4132 kb)

High Resolution (TIF 48928 kb)

ESM 1

(DOCX 35 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vasco-Palacios, A.M., Bahram, M., Boekhout, T. et al. Carbon content and pH as important drivers of fungal community structure in three Amazon forests. Plant Soil 450, 111–131 (2020). https://doi.org/10.1007/s11104-019-04218-3

Download citation

Keywords

  • Dipterocarpaceae
  • Ectomycorrhizal fungi
  • Fabaceae
  • Microbial ecology
  • Tropical forests
  • Fungal diversity