Skip to main content

Advertisement

Log in

Comparative transcriptome combined with metabolomic and physiological analyses revealed ROS-mediated redox signaling affecting rice growth and cellular iron homeostasis under varying pH conditions

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Mechanisms by which soil pH affects rice growth await further elucidation.

Methods

We have used a Systems Biology approach to elucidate the nature of the damage caused by extreme pH to plant growth and iron homeostasis, and the adaptive plant responses elicited.

Results

Optimum pH for rice growth was pH 6. Comparative transcriptome analysis revealed that 83% of 1318 DEGs were down-regulated at pH 4, while 73% among of 1168 DEGs were up-regulated at pH 8. GO enrichment analysis showed significant enhancement of oxidation-reduction and oxidative stress responses. Environmental pH regulated cellular oxidation-reduction processes and metabolic pathways controlling rice growth. Additionally, pH affected cellular iron-homeostasis by regulating root apoplastic iron deposition. Low pH enhanced iron mobilization from root apoplast and accumulation in plant tissues, and down-regulated iron transport related genes to prevent iron toxicity. Conversely,high pH induced blockage of iron mobilization from root apoplast. Rhizosphere pH affected aerenchyma formation and exodermis-apoplastic barriers under control of ROS, already weakened and enhanced by low pH and high pH, respectively.

Conclusions

ROS-mediated redox signaling plays an important role in regulating rice growth under varying pH conditions. Cellular iron homeostasis was disturbed through regulation of iron plaque formation and apoplastic iron mobilization in rice roots under acidic and alkaline conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aloni R, Enstone DE, Peterson CA (1998) Indirect evidence for bulk water flow in root cortical cell walls of three dicotyledonous species. Planta 207:1–7

    Article  CAS  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker M, Asch F (2005) Iron toxicity in rice-conditions and management concepts. J Soil Sci Plant Nutr 168:558–573

    Article  CAS  Google Scholar 

  • Chen H, Zhang Q, Cai H, Xu F (2017). Ethylene mediates alkaline-induced rice growth inhibition by negatively regulating plasma membrane H+-ATPase activity in roots. Front Plant Sci 8: 1839

  • Chen H, Zhang Q, Cai H, Zhou W, Xu F (2018) H2O2 mediates nitrate-induced iron chlorosis by regulating iron homeostasis in rice. Plant Cell Environ 41:767–781

    Article  CAS  PubMed  Google Scholar 

  • Drew MC, He CJ, Morgan PW (2000) Programmed cell death and aerenchyma formation in roots. Trends Plant Sci 5:123–127

    Article  CAS  PubMed  Google Scholar 

  • Enstone DE, Peterson CA, Ma F (2002) Root endodermis and exodermis: structure, function. and responses to the environment J Plant Growth Regul 21:335–351

    Article  CAS  Google Scholar 

  • Evans DE (2003) Aerenchyma formation. New Phytol 161:35–49

    Article  Google Scholar 

  • Fuglsang AT, Guo Y, Cuin TA, Qiu Q, Song C, Kristiansen K (2007) Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. Plant Cell 19:1617–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KW, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010

    Article  CAS  PubMed  Google Scholar 

  • Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. BBA-Bioenergetics 1275:161–203

    Article  PubMed  Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59

    Article  CAS  Google Scholar 

  • Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genom Hum G 2:343–372

    Article  CAS  Google Scholar 

  • Ishimaru Y, Kakei Y, Shimo H, Bashir K, Sato Y, Sato Y, Nishizawa NK (2011) A rice phenolic efflux transporter is essential for solubilizing precipitated apoplasmic iron in the plant stele. J Biol Chem 286: 24649-24655

  • Ishimaru Y, Kim S, Tsukamoto T, Oki H, Kobayashi T, Watanabe S, Nishizawa NK (2007) Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil. PNAS 104:7373–7378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y, Ikka T, Hirayama T, Shinozaki K, Kobayashi M (2007) Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. PNAS 104:9900–9905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin CW, You GY, He YF, Tang C, Wu P, Zheng SJ (2007) Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover. Plant Physiol 144: 278-285

  • Kobayashi T, Ogo Y, Itai RN, Nakanishi H, Takahashi M, Mori S, Nishizawa NK (2007) The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants. PNAS 104:19150–19155

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobayashi Y, Kobayashi Y, Watanabe T, Shaff JE, ohta H, Kochian LV, Wagatsuma T, Kinraide TB, Koyama H (2013) Molecular and physiological analysis of Al3+ and H+ rhizotoxicities at moderately acidic conditions. Plant Physiol 163:180–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kochian LV, Pineros MA, Liu JP, Magalhaes JV (2015) Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annu Rev Plant Biol 66:571–598

    Article  CAS  PubMed  Google Scholar 

  • Kosegarten HU, Hoffmann B, Mengel K (1999) Apoplastic pH and Fe3+ reduction in intact sunflower leaves. Plant Physiol 121:1069–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosegarten HU, Hoffmann B, Mengel K (2001) The paramount influence of nitrate inincreasing apoplastic pH of young sunflower leaves to induce Fe deficiency chlorosis, and the re-greening effect brought about by acidic foliar sprays. J Plant Nutr Soil Sc 164:155–163

    Article  CAS  Google Scholar 

  • Koyama H, toda T, Hara T (2001) Brief exposure to low-pH stress causes irreversible damage to the growing root in Arabidopsis thaliana, pectin-ca interaction may play an important role in proton rhizotoxicity. J Exp Bot 52:361–368

    CAS  PubMed  Google Scholar 

  • Lee Y, Rubio MC, Alassimone J, Geldner N (2013) A mechanism for localized lignin deposition in the endodermis. Cell 153:402–412

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Yang A, Zhang WH (2016) Efficient acquisition of iron confers greater tolerance to saline-alkaline stress in rice (Oryza sativa L.). J Exp Bot 67: 6431–6444

  • Liu J, Guo Y (2011) The alkaline tolerance in Arabidopsis requires microfilament partially through inactivation of PKS5 kinase. J Genet Genomics 38:307–313

    Article  CAS  PubMed  Google Scholar 

  • Lv B, Tian H, Zhang F, Liu J, Lu S, Bai M, Ding Z (2018) Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis. PLoS Genet 14:e1007144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mengel K (1994) Iron availability in plant tissues-iron chlorosis on calcareous soils. Plant Soil 165:275–283

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  • Naseer S, Lee Y, Lapierre C, Franke R, Nawrath C, Geldner N (2012) Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. PNAS 109:10101–10106

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikolic M, Römheld V (2003) Nitrate does not result in iron inactivation in the apoplast of sunflower leaves. Plant Physiol 132:1303–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Sato Y, Nishizawa NK (2011) Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem 286:5446–5454

    Article  CAS  PubMed  Google Scholar 

  • Ogo Y, Kobayashi T, Itai RN, Nakanishi H, Kakei Y, Takahashi M, Nishizawa NK (2008) A novel NAC transcription factor, IDEF2, that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants. J Biol Chem 283:13407–13417

    Article  CAS  PubMed  Google Scholar 

  • Ogo Y, Itai RN, Kobayashi T, Aung MS, Nakanishi H, Nishizawa NK (2011) OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. Plant Mol Biol 75:593–605

    Article  CAS  PubMed  Google Scholar 

  • Orman-Ligeza B, Parizot B, de Rycke R, Fernandez A, Himschoot E, Van Breusegem F (2016) RBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis. Development: dev.136465

  • Pärtel M (2002) Local plant diversity patterns and evolutionary history at the regional scale. Ecology 83:2361–2366

    Article  Google Scholar 

  • Peterson CA, Perumalla CJ (1990) A survey of angiosperm species to detect hypodermal Casparian bands. II. Roots with a multiseriate hypodermis or epidermis. Boi J Linn Soc 103: 113-125

  • Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397:694–697

    Article  CAS  PubMed  Google Scholar 

  • Sattelmacher B (2001) The apoplast and its significance for plant mineral nutrition. New Phytol 149:167–192

    Article  CAS  PubMed  Google Scholar 

  • Schreiber L (2010) Transport barriers made of cutin. suberin and associated waxes Trends Plant Sci 15:546–553

    Article  CAS  PubMed  Google Scholar 

  • Slessarev EW, Lin Y, Bingham NL, Johnson JE, Dai Y, Schimel JP, Chadwick OA (2016) Water balance creates a threshold in soil pH at the global scale. Nature 540:567–569

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Liu L, Yu Y, Liu W, Lu L, Jin C, Lin X (2015) Nitric oxide alleviates aluminum-induced oxidative damage through regulating the ascorbate-glutathione cycle in roots of wheat. J Integr Plant Biol 57:550–561

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat Biotechnol 19:466–469

    Article  CAS  PubMed  Google Scholar 

  • Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319:1241–1244

    Article  CAS  PubMed  Google Scholar 

  • Tsukagoshi H, Busch W, Benfey PN (2010) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143:606–616

    Article  CAS  PubMed  Google Scholar 

  • von Wiren N, Klair S, Bansal S, Briat JF, Khodr H, Shioiri T, Leigh RA, Hider RC (1999) Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants. Plant Physiol 119:1107–1114

    Article  Google Scholar 

  • Wang LU, Ying Y, Narsai R, Ye L, Zheng L, Tian J, Shou H (2013) Identification of OsbHLH133 as a regulator of iron distribution between roots and shoots in Oryza sativa. Plant Cell Environ 36:224–236

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Shhadi M, Gregorio G, Matthus E, Becker M, Frei M (2014) Genetic and physiological analysis of tolerance to acute iron toxicity in rice. Rice 7:1–12

    Article  Google Scholar 

  • Yamauchi T, Shiono K, Nagano M, Fukazawa A, Ando M, Takamure I, Mori H, Nishizawa NK, Kawai-Yamada M, Tsutsumi N, Kato K, Nakazono M (2015) Ethylene biosynthesis is promoted by very-long-chain fatty acids during ly-sigenous aerenchyma formation in rice roots. Plant Physiol 169:180–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi T, Yoshioka M, Fukazawa A, Mori H, Nishizawa NK, Tsutsumi N, Nakazono M (2017) An NADPH oxidase RBOH functions in rice roots during lysigenous aerenchyma formation under oxygen-deficient conditions. Plant Cell 29:775–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan F, Schubert S, Mengel K (1992) Effect of low root medium pH on net proton release, root respiration, and root growth of corn (Zea mays L.) and broad bean (Vicia faba L.). Plant Physiol 99: 415–421

  • Yu XL, Wu DM, Fu YQ, Xu JY, Baluška F, Shen H (2018) OsGLO4 is involved in the formation of iron plaques on surface of rice roots grown under alternative wetting and drying condition. Plant Soil 423:111–123

    Article  CAS  Google Scholar 

  • Zhalnina K, Dias R, de Quadros PD, Davis-Richardson A, Camargo FA, Clark IM, McGrath SP, Hirsch PR, Triplett EW (2015) Soil pH determines microbial diversity and composition in the park grass experiment. Microb Ecol 69:395–406

    Article  CAS  PubMed  Google Scholar 

  • Zhang JT, Mu CS (2009) Effects of saline and alkaline stresses on the germination, growth, photosynthesis, ionic balance and antioxidant system in an alkali-tolerant leguminous forage Lathyrus quinquenervius. J Plant Nutr Soil Sc 55:685–697

    Article  CAS  Google Scholar 

  • Zheng L, Ying Y, Wang L, Wang F, Whelan J, Shou H (2010) Identification of a novel iron regulated basic helix-loop-helix protein involved in Fe homeostasis in Oryza sativa. BMC Plant Biol 10:166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported in part by the Province Key R&D Program of Hunan (2018NK1010); National Key R&D Program of China (2017YFD0200100, 2017YFD0200103); National Natural Science Foundation of China (Grant No.31101596, 31372130); Hunan Provincial Recruitment Program of Foreign Experts; and the National Oilseed Rape Production Technology System of China; “2011 Plan” supported by The Chinese Ministry of Education; Research and Innovation Project of postgraduates in Hunan province (CX2015B242), Double First-class Construction Project of Hunan Agricultural University (kxk201801005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Zhang.

Additional information

Responsible Editor: Miroslav Nikolic.

Electronic supplementary material

ESM 1

(DOC 30481 kb)

ESM 2

(XLS 93 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zhang, Q. & Zhang, Z. Comparative transcriptome combined with metabolomic and physiological analyses revealed ROS-mediated redox signaling affecting rice growth and cellular iron homeostasis under varying pH conditions. Plant Soil 434, 343–361 (2019). https://doi.org/10.1007/s11104-018-3859-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3859-3

Keywords

Navigation