Skip to main content
Log in

Echinochloa stagnina improves soil structure and phytodesalinization of irrigated saline sodic Vertisols

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aim

This study tested the capacity of the semi-aquatic grass Echinochloa stagnina to grow on highly salt-affected soil to improve soil structure and decrease salinity of saline Vertisols.

Methods

The experimental study, conducted over 11 months on soil columns in laboratory conditions, tested three treatments: i) ponded bare soil without crops (CT), ii) soil cultivated with E. stagnina (CEs) in two successive cropping seasons and (iii) soil permanently cultivated with E. stagnina (CEp) with a staggered harvest.

Results

Soil porosity increased when cultivated with E. stagnina but remained constant under bare soil. At the end of the experiment, soil cultivated with E. stagnina had higher macroporosity (6–9%) than bare soil (3–4%), linked mainly to root development. Moreover, salt stock, which was initially similar in the columns, decreased by 65–87% in soil cultivated with E. stagnina and by 34–45% in ponded bare soil. Salt accumulation in plant biomass contributed 22–35% of soil desalinization vs 65–78% due to leaching. In addition, E. stagnina produced 10–12 t.ha−1 (dry weight) of forage in 11 months, which makes it of economic interest for farmers.

Conclusions

An irrigated E. stagnina crop appears effective at improving physical properties and reducing salinity of Vertisols and also at producing forage. Future studies must be performed with modeling approaches that use hydrodynamic parameters to characterize phytodesalinization of Vertisols by E. stagnina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adam I (2011) Cartographie fine et suivi détaillé de la salinité des sols d’un périmètre irrigué au Niger en vue de leur remédiation. Doctoral thesis. Université Abdou Moumouni de Niamey (Niger) and Agrocampus Ouest de Rennes, France, 219 pp.

  • Adam I, Michot D, Guero Y, Soubeiga B, Moussa I, Walter C (2012) Detecting soil salinity changes in irrigated Vertisols by electrical resistivity prospection during a desalinization experiment. Agric Water Manag 109:1–10

    Article  Google Scholar 

  • Ado MN, Guéro Y, Michot D, Soubeiga B, Kiesse TS, Walter C (2016) Phytodesalinization of irrigated saline Vertisols in the Niger Valley by Echinochloa stagnina. Agric Water Manag 177:229–240

    Article  Google Scholar 

  • AFNOR (1996) Norme NF ISO 11265. Détermination de la conductivité électrique spécifique. In: Qualité des sols, Recueil de normes françaises, 3éme édition, Paris-La défense

  • Akhter J, Murray R, Mahmood K, Malik KA, Ahmed S (2004) Improvement of degraded physical properties of a saline-sodic soil by reclamation with kallar grass (Leptochloa fusca). Plant Soil 258:207–216

    Article  CAS  Google Scholar 

  • Ammari TG, Tahboub AB, Saoub HM, Hattar BI, Al-Zubi YA (2008) Salt removal efficiency as influenced by phyto-amelioration of salt-affected soils. J Food Agric Environ 6:456–460

    CAS  Google Scholar 

  • Aydemir S, Sünger H (2011) Bioreclamation effect and growth of a leguminous forage plant (Lotus corniculatus) in calcareous saline-sodic soil. Afr J Biotechnol 10:15571–15577

    Article  CAS  Google Scholar 

  • Barbiero L, Valles V, Régeard A, Cheverry C (2001) Residual alkalinity as tracer to estimate the changes induced by forage cultivation in a non-saline irrigated sodic soil. Agric Water Manag 50:229–241

    Article  Google Scholar 

  • Blanchart E, Albrecht A, Chevallier T, Barakat M, Hartmann C, Heulin T, Larré-Larrouy (2004) The respective roles of roots and earthworms in restoring physical properties of Vertisols under a Digitaria decumbens pasture (Martinique, WI). Agric Ecosyst Environ 103:343–355

    Article  Google Scholar 

  • Bottinelli N, Hallaire V, Goutal N, Bonnaud P, Ranger J (2014) Impact of heavy traffic on soil macroporosity of two silty forest soils: initial effect and short-term recovery. Geoderma 217:10–17

    Article  Google Scholar 

  • Cabidoche YM, Guillaume P, Hartmann C, Ruy S, Blanchart E, Albrecht A, Mahieu M, Achouak W, Heulin T, Villemin G, Watteau F, Bellier G (2000) Déterminants biologiques du système poral de Vertisols cultivés (Petites Antilles): conséquences sur la disponibilité de l'eau des sols pour les plantes. Etude et Gestion des Sols 7:329–352

    Google Scholar 

  • Chessel D, Dufour A B (2008) Modèles logistiques, Rapport utilisant le logiciel R. pp 9

  • Dieter G, Hassane D (2001) Profil fourrager au Niger. Rapport FAO pp 25

  • FAO (2014) World reference base for soil resources: international soil classification system for naming soils and creating legends for soil maps, Rome, Italy

  • Gaudart J, Giorgi R, Thalabard JC, Thiam D, Whegang S (2010) Modèles linéaires à effets mixtes 11 p.Gharaibeh M a, Rusan M J, Eltaif N I, Shunnar O F (2014) reclamation of highly calcareous saline-sodic soil using low quality water and phosphogypsum. Appl Water Sci 4:223–230

    Google Scholar 

  • Gharaibeh MA, Rusan MJ, Eltaif NI, Shunnar OF (2014) Reclamation of highly calcareous saline-sodic soil using low quality water and phosphogypsum. Appl Water Sci 4:223–230

    Article  CAS  Google Scholar 

  • Guéro Y (2000) Contribution à l’étude des mécanismes de dégradation physico-chimique des sols sous climat sahélien. Exemple pris dans la vallée du moyen Niger. Doctoral thesis. Université Abdou Moumouni de Niamey, Niger

  • Jesus JM, Danko AS, Fiúza A, Borges MT (2015) Phytoremediation of salt-affected soils: a review of processes, applicability, and the impact of climate change. Environ Sci Pollut Res 22:6511–6525

    Article  CAS  Google Scholar 

  • Lamandé M, Hallaire V, Curmi P, Péres G, Cluzeau D (2003) Changes of pore morphology, infiltration and earthworm community in a loamy soil under different agricultural managements. Catena 54:637–649

    Article  Google Scholar 

  • Li JH, Li L, Chen R, Li DQ (2016) Cracking and vertical preferential flow through landfill clay liners. Eng Geol 206:33–41

    Article  Google Scholar 

  • Logsdon, S D (2013) Root effects on soil properties and processes: synthesis and future research needs. In Enhancing understanding and quantification of soil–root growth interactions. Timlin D, Ahuja L R (Eds.). Advances in agricultural systems modeling, vol. 4: 173–196

  • Marlet S (2005) Evolution des systèmes d'irrigation et gestion de la salinité des terres irriguées. Séminaire sur la modernisation de l'agriculture irriguée, Rabat

  • Nouri H, Borujenib SC, Nirola R, Hassanli A, Beecham S, Alaghmand S, Saint C, Mulcahy D (2017) Application of green remediation on soil salinity treatment: a review on halophytoremediation. Process Saf Environ Prot 107:94–107

    Article  CAS  Google Scholar 

  • Oicha T, Cornelis W M, Verplancke H, Nyssen J, Govaerts B, Behailu M, Haile M, Deckers J (2010) Short-term effects of conservation agriculture on Vertisols under tef (Eragrostis tef (Zucc.) Trotter) in the northern Ethiopian highlands. Soil Tillage Res 106:294–302

  • Paine CE, Marthews TR, Vogt DR, Purves D, Rees M, Hector A, Turnbull LA (2012) How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Methods Ecol Evol 3:245–256

    Article  Google Scholar 

  • Pinheiro J, Bates D., DebRoy S, Sarkar D, (2009) nlme: linear and nonlinear mixed effects models, R package version 3

  • Qadir M, Ghafoor A, Murtaza G (2000) Amelioration strategies for saline soils: a review. Land Degrad Dev 11:501–521

    Article  Google Scholar 

  • Qadir M, Steffens D, Yan F, Schubert S (2003) Sodium removal from a calcareous saline-sodic soil through leaching and plant uptake during phytoremediation. Land Degrad Dev 14:301–307

    Article  Google Scholar 

  • Qadir M, Oster JD, Schubert S, Noble AD, Noble AD, Sahrawat KL (2007) Phytoremediation of sodic and saline-sodic soils. Adv Agron 96:197–247

    Article  CAS  Google Scholar 

  • Rabhi M, Karray-Bouraoui N, Medini R, Attia H, Attia H, Athar HUR, Abdelly C, Smaoui A (2010) Seasonal variations in phytodesalination capacity of two perennial halophytes in their natural biotope. J Biol Res (Thessaloniki) 14:181–189

    CAS  Google Scholar 

  • Ravindran KC, Venkatesan K, Balakrishnan V, Chellappan KP, Balasubramanian T (2007) Restoration of saline land by halophytes for Indian soils. Soil Biol Biochem 39:2661–2664

    Article  CAS  Google Scholar 

  • Singh A and Ward O P (2004) Applied bioremediation and phytoremediation. Springer publication

  • Tan JL, Kang YH (2009) Changes in soil properties under the influences of cropping and drip irrigation during the reclamation of severe salt-affected soils. Agric Sci China 8(10):1228–1237

    Article  CAS  Google Scholar 

  • Vezzani FM, Anderson C, Meenken E, Gillespie R, Peterson M, Beare MH (2018) The importance of plants to development and maintenance of soil structure, microbial communities and ecosystem functions. Soil Tillage Res 175:139–149

    Article  Google Scholar 

  • Yan K, Xu H, Zhao S, Shan J, Chen X (2016) Saline soil desalination by honeysuckle (Lonicera japonica Thunb.) depends on salt resistance mechanism. Ecol Eng 88:226–231

    Article  Google Scholar 

  • Zhao Z, Zhang K, Wang P, Wang L, Wang L, Yin CH, Tian CY (2013) The effects of halophytes on salt balance in an arid irrigation district. J Food Agric Environ 11:2669–2673

    Google Scholar 

  • Zorrig WRM, Ferchichi S, Smaoui A, Abdelly C (2012) Phytodesalination: a solution for salt-affected soils in arid and semi-arid regions. J Arid Land Stud 22:299–302

    Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. statistics for biology and health. Springer, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maman Nassirou Ado.

Additional information

Responsible Editor: Wieland Fricke.

Electronic supplementary material

ESM 1

(DOCX 13 kb)

ESM 2

(DOCX 12 kb)

ESM 3

(DOCX 13 kb)

ESM 4

(DOCX 89.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ado, M.N., Michot, D., Guero, Y. et al. Echinochloa stagnina improves soil structure and phytodesalinization of irrigated saline sodic Vertisols. Plant Soil 434, 413–424 (2019). https://doi.org/10.1007/s11104-018-3853-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3853-9

Keywords

Navigation