Plant and Soil

, Volume 429, Issue 1–2, pp 35–52 | Cite as

Identity of plant, lichen and moss species connects with microbial abundance and soil functioning in maritime Antarctica

  • Alberto Benavent-GonzálezEmail author
  • Manuel Delgado-Baquerizo
  • Laura Fernández-Brun
  • Brajesh K. Singh
  • Fernando T. Maestre
  • Leopoldo G. Sancho
Regular Article


Background and aims

We lack studies evaluating how the identity of plant, lichen and moss species relates to microbial abundance and soil functioning on Antarctica. If species identity is associated with soil functioning, distributional changes of key species, linked to climate change, could significantly affect Antarctic soil functioning.


We evaluated how the identity of six Antarctic plant, lichen and moss species relate to a range of soil attributes (C, N and P cycling), microbial abundance and structure in Livingston Island, Maritime Antarctica. We used an effect size metric to predict the association between species (vs. bare soil) and the measured soil attributes.


We observed species-specific effects of the plant and biocrust species on soil attributes and microbial abundance. Phenols, phosphatase and β-D-cellobiosidase activities were the most important attributes characterizing the observed patterns. We found that the evaluated species positively correlated with soil nutrient availability and microbial abundance vs. bare soil.


We provide evidence, from a comparative study, that plant and biocrust identity is associated with different levels of soil functioning and microbial abundance in Maritime Antarctica. Our results suggest that changes in the spatial distribution of these species linked to climate change could potentially entail changes in the functioning of Antarctic terrestrial ecosystems.


Antarctic vegetation Bacteria Fungi qPCR Soil enzyme activities 



We thank the reviewers and editor of this article for their constructive and precise comments. We also thank Victoria Ochoa, Beatriz Gozalo and Chanda Trivedi for their kind assistance through laboratory work and Jasmine Grinyer for revising the English of this manuscript. We thank José Manuel Blanquer, the B.I.O. Hesperides crew and the Spanish Antarctic Base JCI team for their support during the field campaign. This research was supported by grants from the Spanish Ministerio de Economía y Competitividad (CTM2015-64728-C2-1-R, CTM2012-38222-CO2-01 and CGL2013-44661-R) and the European Research Council (BIODESERT project, ERC Grant agreement n° 647038). ABG was supported by FPI (BES-2013-062945) and short stay (EEBB-I-15-09187) grants from Spanish Ministerio de Economía y Competitividad. MDB is supported from the Marie Sklodowska-Curie Actions of the Horizon 2020 Framework Program H2020-MSCA-IF-2016 under REA grant agreement n° 702057 and from the BES (MUSGONET) grant agreement n° LRA17\1193. BKS work is supported by the Australian Research Council (DP170104634).

Supplementary material

11104_2018_3721_MOESM1_ESM.png (120 kb)
Figure S1 Fertility effect of the species studied (vs. bare ground areas), as measured with the relative interaction index (RII), on soil variables that did not show statistical differences between species (n = 10, except Cladonia sp. with n = 6). CL: Cladonia sp.; DA: Deschampsia antarctica; LP: Leptogium puberulum; SA: Stereocaulon alpinum; SG: Sphaerophorus globosus; SU: Sanionia uncinata. (PNG 120 kb)


  1. Agati G, Tattini M (2010) Multiple functional roles of flavonoids in photoprotection. New Phytol 186:786–793. CrossRefPubMedGoogle Scholar
  2. Allington GRH, Valone TJ (2014) Islands of fertility: a byproduct of grazing? Ecosystems 17:127–141. CrossRefGoogle Scholar
  3. Almeida ICC, Schaefer CEGR, Fernandes RBA, Pereira TTC, Nieuwendam A, Pereira AB (2014) Active layer thermal regime at different vegetation covers at lions rump, king George Island, maritime Antarctica. Geomorphology 225:36–46. CrossRefGoogle Scholar
  4. Amesbury MJ, Roland TP, Royles J, Hodgson DA, Convey P, Griffiths H, Charman DJ (2017) Widespread biological response to rapid warming on the Antarctic peninsula. Curr Biol 27:1616–1622.e2. CrossRefPubMedGoogle Scholar
  5. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. CrossRefGoogle Scholar
  6. Anderson JM, Ingram JSI (1993) Tropical soil biology and fertility: a handbook of methods. Wallingford:CABIGoogle Scholar
  7. Archer E (2013) Estimate permutation p-values for importance metrics. R package version 1.5.2Google Scholar
  8. Armas C, Ordiales R, Pugnaire FICN (2004) Measuring plant interactions: a new comarative index. Ecology 85(10):2682–2686. CrossRefGoogle Scholar
  9. Arnosti C, Bell C, Moorhead DL, Sinsabaugh RL, Steen AD, Stromberger M, Wallenstein M, Weintraub MN (2014) Extracellular enzymes in terrestrial, freshwater, and marine environments: perspectives on system variability and common research needs. Biogeochemistry 117:5–21. CrossRefGoogle Scholar
  10. Baker NR, Allison SD (2017) Extracellular enzyme kinetics and thermodynamics along a climate gradient in southern California. Soil Biol Biochem 114:82–92. CrossRefGoogle Scholar
  11. Bañón M, Justel A, Velázquez D, Quesada A (2013) Regional weather survey on byers peninsula, Livingston Island, south Shetland Islands, Antarctica. Antarct Sci 25:146–156. CrossRefGoogle Scholar
  12. Barger NN, Weber B, Garcia-Pichel F, et al (2016) Patterns and Controls on Nitrogen Cycling of Biological Soil Crusts. In: Weber B, Büdel B, Belnap J (eds) Biological Soil Crusts: An Organizing Principle in Drylands. Springer International Publishing, Cham, pp 257–285Google Scholar
  13. Bates ST, Nash TH, Sweat KG, Garcia-Pichel F (2010) Fungal communities of lichen-dominated biological soil crusts: diversity, relative microbial biomass, and their relationship to disturbance and crust cover. J Arid Environ 74:1192–1199. CrossRefGoogle Scholar
  14. Bell CW, Fricks BE, Rocca JD, Steinweg JM, McMahon SK, Wallenstein MD (2013) High-throughput Fluorometric measurement of potential soil extracellular enzyme activities. J Vis Exp:1–16.
  15. Bell C, Carrillo Y, Boot CM, Rocca JD, Pendall E, Wallenstein MD (2014a) Rhizosphere stoichiometry: are C : N : P ratios of plants, soils, and enzymes conserved at the plant species-level? New Phytol 201:505–517. CrossRefPubMedGoogle Scholar
  16. Bell C, Stromberger M, Wallenstein M (2014b) New insights into enzymes in the environment. Biogeochemistry 117:1–4. CrossRefGoogle Scholar
  17. Belnap J (2006) The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol Process 20:3159–3178. CrossRefGoogle Scholar
  18. Belnap J (2011) Biological phosphorus cycling in Dryland regions. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action. Springer Berlin Heidelberg, pp 371–406Google Scholar
  19. Belnap J, Prasse R, Harper KT (2003) Influence of biological soil crusts on soil environments and vascular plants. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 281–300CrossRefGoogle Scholar
  20. Bergstrom DM, Convey P, Huiskes AHL (2006) Trends in Antarctic Terrestrial and Limnetic Trends in Antarctic Terrestrial and LimneticGoogle Scholar
  21. Beyer L, Pingpank K, Wriedt G, Bölter M (2000) Soil formation in coastal continental Antarctica (Wilkes land). Geoderma 95:283–304. CrossRefGoogle Scholar
  22. Bowker MA, Mau RL, Maestre FT, Escolar C, Castillo-Monroy AP (2011) Functional profiles reveal unique ecological roles of various biological soil crust organisms. Funct Ecol 25:787–795. CrossRefGoogle Scholar
  23. Bray RH, Kurtz LT (1945) Determination of Total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–46CrossRefGoogle Scholar
  24. Breiman L (2001) Random forests. Mach Learn 45:5–32. CrossRefGoogle Scholar
  25. Brookes P, Landman A, Pruden G (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol 17:837–842CrossRefGoogle Scholar
  26. Burns RG, DeForest JL, Marxsen J et al (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234. CrossRefGoogle Scholar
  27. Cannone N, Guglielmin M (2010) Relationships between periglacial features and vegetation development in Victoria Land, continental Antarctica. 22:703–713. doi:
  28. Cannone N, Wagner D, Hubberten HW, Guglielmin M (2008) Biotic and abiotic factors influencing soil properties across a latitudinal gradient in Victoria land, Antarctica. Geoderma 144:50–65. CrossRefGoogle Scholar
  29. Cannone N, Guglielmin M, Convey P, Worland MR, Favero Longo SE (2016) Vascular plant changes in extreme environments: effects of multiple drivers. Clim Chang 134:651–665. CrossRefGoogle Scholar
  30. Celenza G, Segatore B, Setacci D, Bellio P, Brisdelli F, Piovano M, Garbarino JA, Nicoletti M, Perilli M, Amicosante G (2012) In vitro antimicrobial activity of pannarin alone and in combination with antibiotics against methicillin-resistant Staphylococcus aureus clinical isolates. Phytomedicine 19:596–602. CrossRefPubMedGoogle Scholar
  31. Celenza G, Segatore B, Setacci D, Perilli M, Brisdelli F, Bellio P, Piovano M, Garbarino JA, Amicosante G, Nicoletti M (2013) Antibacterial activity of selected metabolites from Chilean lichen species against methicillin-resistant staphylococci. Nat Prod Res 27:1528–1531. CrossRefPubMedGoogle Scholar
  32. Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L (2010) Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329:1–25. CrossRefGoogle Scholar
  33. Chapman SK, J a L, Hart SC, Koch GW (2005) Plants actively control nitrogen cycling: uncorking the microbail bottleneck. New Phytol 169:27–34. CrossRefGoogle Scholar
  34. Chen J, Stark JM (2000) Plant species e € ects and carbon and nitrogen cycling in a sagebrush ± crested wheatgrass soil. 32:47–57Google Scholar
  35. Cleveland CC, Reed SC, Keller AB, Nemergut DR, O’Neill SP, Ostertag R, Vitousek PM (2014) Litter quality versus soil microbial community controls over decomposition: a quantitative analysis. Oecologia 174:283–294. CrossRefPubMedGoogle Scholar
  36. Colesie C, Büdel B, Hurry V, Green TGA (2017) Can Antarctic lichens acclimatize to changes in temperature? Glob Chang Biol 24:1123–1135. CrossRefPubMedGoogle Scholar
  37. Concostrina-Zubiri L, Huber-Sannwald E, Martínez I, Flores Flores JL, Escudero A (2013) Biological soil crusts greatly contribute to small-scale soil heterogeneity along a grazing gradient. Soil Biol Biochem 64:28–36. CrossRefGoogle Scholar
  38. Cornelissen JHC, Lang SI, Soudzilovskaia NA, During HJ (2007) Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann Bot 99:987–1001. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Crittenden PD (1999) Aspects of the ecology of mat-forming lichens. Rangifer 20:127–139CrossRefGoogle Scholar
  40. Cross AF, Schlesinger WH (1999) Plant regulation of soil nutrient distribution in the northern Chihuahuan Desert. Plant Ecol 145:11–25CrossRefGoogle Scholar
  41. De Albuquerque MP, de Victoria FC, Schünemann AL et al (2012) Plant composition of Skuas nests at Hennequin point, king George Island, Antarctica. Am J Plant Sci 3:688–692. CrossRefGoogle Scholar
  42. de Graaff MA, Throop HL, Verburg PSJ, Arnone JA, Campos X (2014) A synthesis of climate and vegetation cover effects on biogeochemical cycling in shrub-dominated Drylands. Ecosystems 17:931–945. CrossRefGoogle Scholar
  43. Delgado-Baquerizo M, Covelo F, Gallardo A (2011) Dissolved organic nitrogen in Mediterranean ecosystems ∗ 1. Pedosph an. Int J 21:309–318. CrossRefGoogle Scholar
  44. Delgado-Baquerizo M, Covelo F, Maestre FT, Gallardo A (2013) Biological soil crusts affect small-scale spatial patterns of inorganic N in a semiarid Mediterranean grassland. J Arid Environ 91:147–150. CrossRefGoogle Scholar
  45. Delgado-Baquerizo M, Gallardo A, Covelo F, Prado-Comesaña A, Ochoa V, Maestre FT (2015) Differences in thallus chemistry are related to species-specific effects of biocrust-forming lichens on soil nutrients and microbial communities. Funct Ecol 29:1087–1098. CrossRefGoogle Scholar
  46. Delgado-Baquerizo M, Maestre FT, Eldridge DJ, Bowker MA, Ochoa V, Gozalo B, Berdugo M, Val J, Singh BK (2016) Biocrust-forming mosses mitigate the negative impacts of increasing aridity on ecosystem multifunctionality in drylands. New Phytol 209:1540–1552. CrossRefPubMedGoogle Scholar
  47. Dixon RA, Paiva NL (1995) Stress-induced Phenylpropanoid metabolism. Plant Cell 7:1085–1097. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Escudero A, Giménez-Benavides L, Iriondo JM, Rubio A (2004) Patch dynamics and islands of fertility in a high mountain Mediterranean community. Arct Antarct Alp Res 36:518–527.[0518:PDAIOF]2.0.CO;2Google Scholar
  49. Evans SE, Wallenstein MD (2012) Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter? Biogeochemistry 109:101–116. CrossRefGoogle Scholar
  50. Fan F, Zhang F, Lu Y (2011) Linking plant identity and interspecific competition to soil nitrogen cycling through ammonia oxidizer communities. Soil Biol Biochem 43:46–54. CrossRefGoogle Scholar
  51. Gianfreda L (2015) Enzymes of importance to rhizosphere processes. J Soil Sci Plant Nutr 15(2):283–306Google Scholar
  52. Haigler CH, Weimer PJ (eds) (1991) Biosynthesis and biodegradation of cellulose. Marcel Dekker, New York, p 694.
  53. Hauck M, Jürgens SR, Willenbruch K, Huneck S, Leuschner C (2009) Dissociation and metal-binding characteristics of yellow lichen substances suggest a relationship with site preferences of lichens. Ann Bot 103:13–22. CrossRefPubMedGoogle Scholar
  54. Heritage J, Evans EGV, Killington RA (1999) The microbiology of soil and nutrient cycling. Microbiol Action:2–13Google Scholar
  55. Hooper DU, Vitousek PM (1997) The effects of plant composition and diversity on ecosystem processes. Science (80-) 277:1302–1305CrossRefGoogle Scholar
  56. Hughes KA, Ott S, Bölter M, Convey P (2006) Colonisation processes. In: Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator, pp 35–54CrossRefGoogle Scholar
  57. Iakiviak M, Mackie RI, Cann IKO (2011) Functional analyses of multiple lichenin-degrading enzymes from the rumen bacterium Ruminococcus albus 8. Appl Environ Microbiol 77:7541–7550. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Jax K (2010) Ecosystem functioning. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  59. Jones DL, Oburger E (2011) Solubilization of phosphorus by soil microorganisms. In: Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling pp 169–198Google Scholar
  60. Jones D, Wilson M (1985) Chemical activity of lichens on mineral surfaces. A Rev Int Biodeterior 21:99–104Google Scholar
  61. Kanda T, Yatomi H, Makishima S, Amano Y, Nisizawa K (1989) Substrate specificities of exo- and endo-type cellulases in the hydrolysis of β-(1→3)- and β-(1→4)-mixed D-glucans. J Biochem 105:127–132CrossRefPubMedGoogle Scholar
  62. Kappen L, Polarkologie I, Kiel U et al (1985) Vegetation and ecology of ice, free areas of northern Victoria land, Antarctica 2. Ecological conditions in typical microhabitats of lichens at birthday ridge. Polar Biol 4:213–225CrossRefGoogle Scholar
  63. Kardol P, Cregger MA, Campany CE, Classen AT (2010) Soil ecosystem functioning under climate change: plant species and community effects. Ecology 91:767–781. CrossRefPubMedGoogle Scholar
  64. Kennedy AD (1993) Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arct Alp Res 25:308–315. CrossRefGoogle Scholar
  65. Kettler TA, Doran JW, Gilbert TL (2001) Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Sci Soc Am J 65:849–852. CrossRefGoogle Scholar
  66. Kirby KN, Gerlanc D (2013) BootES: an R package for bootstrap confidence intervals on effect sizes. Behav Res Methods 45:905–927. CrossRefPubMedGoogle Scholar
  67. Köhler H, Contreras RA, Pizarro M, Cortés-Antíquera R, Zúñiga GE (2017) Antioxidant responses induced by UVB radiation in Deschampsia antarctica Desv. Front Plant Sci 8:1–10. CrossRefGoogle Scholar
  68. Kreyszig E (1978) Introductory Functional Analysis with ApplicationsGoogle Scholar
  69. Lawrey JD (1986) Biological role of lichen substances. Bryologist 89:111–122. CrossRefGoogle Scholar
  70. Lawrey JD (1989) Lichen secondary compounds: evidence for a correspondence between Antiherbivore and antimicrobial function. Bryologist 92:326–328CrossRefGoogle Scholar
  71. Lee JR, Raymond B, Bracegirdle TJ, Chadès I, Fuller RA, Shaw JD, Terauds A (2017) Climate change drives expansion of Antarctic ice-free habitat. Nature 547:49–54. CrossRefPubMedGoogle Scholar
  72. Liu Y, Yang H, Li X, Xing Z (2014) Effects of biological soil crusts on soil enzyme activities in revegetated areas of the Tengger Desert, China. Appl Soil Ecol 80:6–14. CrossRefGoogle Scholar
  73. Liu YR, Delgado-Baquerizo M, Trivedi P, He JZ, Singh BK (2016) Species identity of biocrust-forming lichens drives the response of soil nitrogen cycle to altered precipitation frequency and nitrogen amendment. Soil Biol Biochem 96:128–136. CrossRefGoogle Scholar
  74. Liu YR, Delgado-Baquerizo M, Trivedi P, He JZ, Wang JT, Singh BK (2017) Identity of biocrust species and microbial communities drive the response of soil multifunctionality to simulated global change. Soil Biol Biochem 107:208–217. CrossRefGoogle Scholar
  75. Maestre FT, Castillo-Monroy AP, Bowker MA, Ochoa-Hueso R (2012a) Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern. J Ecol 100:317–330. CrossRefGoogle Scholar
  76. Maestre FT, Quero JL, Gotelli NJ, Escudero A, Ochoa V, Delgado-Baquerizo M, Garcia-Gomez M, Bowker MA, Soliveres S, Escolar C, Garcia-Palacios P, Berdugo M, Valencia E, Gozalo B, Gallardo A, Aguilera L, Arredondo T, Blones J, Boeken B, Bran D, Conceicao AA, Cabrera O, Chaieb M, Derak M, Eldridge DJ, Espinosa CI, Florentino A, Gaitan J, Gatica MG, Ghiloufi W, Gomez-Gonzalez S, Gutierrez JR, Hernandez RM, Huang X, Huber-Sannwald E, Jankju M, Miriti M, Monerris J, Mau RL, Morici E, Naseri K, Ospina A, Polo V, Prina A, Pucheta E, Ramirez-Collantes DA, Romao R, Tighe M, Torres-Diaz C, Val J, Veiga JP, Wang D, Zaady E (2012b) Plant species richness and ecosystem multifunctionality in global Drylands. Science (80- ) 335:214–218. CrossRefGoogle Scholar
  77. Malik AA, Chowdhury S, Schlager V, Oliver A, Puissant J, Vazquez PGM, Jehmlich N, von Bergen M, Griffiths RI, Gleixner G (2016) Soil fungal: bacterial ratios are linked to altered carbon cycling. Front Microbiol 7:1–11. CrossRefGoogle Scholar
  78. Mallen-Cooper M, Eldridge DJ (2016) Laboratory-based techniques for assessing the functional traits of biocrusts. Plant Soil 406:131–143. CrossRefGoogle Scholar
  79. Melick ADR, Seppelt RD (1997) Vegetation patterns in relation to climatic and endogenous changes in Wilkes land, continental Antarctica Source: The Journal of Ecology, Vol. 85, No. 1, ( Feb ., 1997 ), pp. 43–56 Published by : British Ecological Society Stable URL: http://www. J Ecol 85:43–56Google Scholar
  80. Mihoč MAK, Giménez-Benavides L, Pescador DS, Sánchez AM, Cavieres LA, Escudero A (2016) Soil under nurse plants is always better than outside: a survey on soil amelioration by a complete guild of nurse plants across a long environmental gradient. Plant Soil 408:31–41. CrossRefGoogle Scholar
  81. Millbank JW (1978) The Contribution of nitrogen-fixing lichens to the nitrogen status of their environment. In: Environmental Role of Nitrogen-fixing Blue-green Algae and Asymbiotic Bacteria. p 260–?? (incomplete pages)Google Scholar
  82. Millbank JW (1982) The assessment of nitrogen fixation and throughput by lichens: III. Losses of nitrogenous compounds by Peltigera Membranacea, P. Polydactyla and Lobaria Pulmonaria in simulated rainfall episodes. New Phytol 92:229–234. CrossRefGoogle Scholar
  83. Miralles I, Domingo F, Cantón Y, Trasar-Cepeda C, Leirós MC, Gil-Sotres F (2012) Hydrolase enzyme activities in a successional gradient of biological soil crusts in arid and semi-arid zones. Soil Biol Biochem 53:124–132. CrossRefGoogle Scholar
  84. Ochoa-Hueso R, Eldridge DJ, Delgado-Baquerizo M, Soliveres S, Bowker MA, Gross N, le Bagousse-Pinguet Y, Quero JL, García-Gómez M, Valencia E, Arredondo T, Beinticinco L, Bran D, Cea A, Coaguila D, Dougill AJ, Espinosa CI, Gaitán J, Guuroh RT, Guzman E, Gutiérrez JR, Hernández RM, Huber-Sannwald E, Jeffries T, Linstädter A, Mau RL, Monerris J, Prina A, Pucheta E, Stavi I, Thomas AD, Zaady E, Singh BK, Maestre FT (2018) Soil fungal abundance and plant functional traits drive fertile island formation in global drylands. J Ecol 106:242–253. CrossRefGoogle Scholar
  85. Otálora MAG, Jørgensen PM, Wedin M (2014) A revised generic classification of the jelly lichens, Collemataceae. Fungal Divers 64:275–293. CrossRefGoogle Scholar
  86. Parnikoza I, Dykyy I, Ivanets V, Kozeretska I, Kunakh V, Rozhok A, Ochyra R, Convey P (2012) Use of Deschampsia antarctica for nest building by the kelp gull in the argentine islands area (maritime Antarctica) and its possible role in plant dispersal. Polar Biol 35:1753–1758. CrossRefGoogle Scholar
  87. Perroni-Ventura Y, Montaña C, García-Oliva F (2010) Carbon-nitrogen interactions in fertility island soil from a tropical semi-arid ecosystem. Funct Ecol 24:233–242. CrossRefGoogle Scholar
  88. Qu XH, Wang JG (2008) Effect of amendments with different phenolic acids on soil microbial biomass, activity, and community diversity. Appl Soil Ecol 39:172–179. CrossRefGoogle Scholar
  89. Rai AN, Bergman B, Rasmussen U (eds) (2002) Cyanobacteria in Symbiosis. Springer Netherlands, Dordrecht.
  90. Reiss J, Bridle JR, Montoya JM, Woodward G (2009) Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol Evol 24:505–514. CrossRefPubMedGoogle Scholar
  91. Ruhland CT, Xiong FS, Clark WD, Day TA (2005) The influence of ultraviolet-B radiation on growth, Hydroxycinnamic acids and flavonoids of Deschampsia antarcfica during springtime ozone depletion in Antarctica. Photochem Photobiol 81:1086–1093. CrossRefPubMedGoogle Scholar
  92. Sancho LG, Schulz F, Schroeter B, Kappen L (1999) Bryophyte and lichen flora of South Bay (Livingston Island: south Shetland Islands, Antarctica). Nova Hedwigia 68:301–337Google Scholar
  93. Sancho LG, Belnap J, Colesie C, et al (2016) Carbon Budgets of Biological Soil Crusts at Micro-, Meso-, and Global Scales. In: Weber B, Büdel B, Belnap J (eds) Biological Soil Crusts: An Organizing Principle in Drylands. Springer International Publishing, Cham, pp 287–304Google Scholar
  94. Sancho LG, Pintado A, Navarro F, Ramos M, de Pablo MA, Blanquer JM, Raggio J, Valladares F, Green TGA (2017) Recent warming and cooling in the Antarctic peninsula region has rapid and large effects on lichen vegetation. Sci Rep 7:5689. CrossRefPubMedPubMedCentralGoogle Scholar
  95. Schlensog M, Green TGA, Schroeter B (2013) Life form and water source interact to determine active time and environment in cryptogams: an example from the maritime Antarctic. Oecologia 173:59–72. CrossRefPubMedGoogle Scholar
  96. Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrell WM, Virginia RA, Whitford WG (1990) Biological feedbacks in global desertification. Science (80-) 247:1043–1048. CrossRefGoogle Scholar
  97. Schlesinger WH, Raikes JA, Hartley AE, Cross AF (1996) On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77:364–374CrossRefGoogle Scholar
  98. Schroeter B, Green TGA, Pannewitz S, Schlensog M, Sancho LG (2011) Summer variability, winter dormancy: lichen activity over 3 years at Botany Bay, 77°S latitude, continental Antarctica. Polar Biol 34:13–22. CrossRefGoogle Scholar
  99. Søchting U, Øvstedal D, Sancho LG (2004) The lichens of Hurd peninsula, Livingston Island, south Shetlands. Antarctica Biblioth Lichenol:607–658Google Scholar
  100. Solomon S (1999) Stratospheric ozone depletion: A review of concepts and history. 275–316Google Scholar
  101. Solomon S (2004) The hole truth. Nature 427:289–291. CrossRefPubMedGoogle Scholar
  102. Torres-Mellado GA, Jaña R, Casanova-Katny MA (2011) Antarctic hairgrass expansion in the south Shetland archipelago and Antarctic peninsula revisited. Polar Biol 34:1679–1688. CrossRefGoogle Scholar
  103. van der Putten WH, Bradford MA, Pernilla Brinkman E, van de Voorde TFJ, Veen GF (2016) Where, when and how plant–soil feedback matters in a changing world. Funct Ecol 30:1109–1121. CrossRefGoogle Scholar
  104. Vieira G, Mora C, Pina P, Schaefer CER (2014) A proxy for snow cover and winter ground surface cooling: mapping Usnea sp. communities using high resolution remote sensing imagery (maritime Antarctica). Geomorphology 225:69–75. doi:
  105. Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57:1–45CrossRefGoogle Scholar
  106. Wasley J, Robinson SA, Lovelock CE, Popp M (2006) Climate change manipulations show Antarctic flora is more strongly affected by elevated nutrients than water. Glob Chang Biol 12:1800–1812. CrossRefGoogle Scholar
  107. Whitton B, Al-Shehri AM, Ellwood NTW, Turner BL (2005) Ecological aspects of phosphatase activity in cyanobacteria, eukaryotic algae and bryophytes. Org Phosphorus Environ:1–43Google Scholar
  108. Xiong FS, Day TA (2001) Effect of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of Antarctic vascular plants. Plant Physiol 125:738–751. CrossRefPubMedPubMedCentralGoogle Scholar
  109. Zhang W, Zhang G, Liu G, Dong Z, Chen T, Zhang M, Dyson PJ, An L (2012) Bacterial diversity and distribution in the southeast edge of the Tengger Desert and their correlation with soil enzyme activities. J Environ Sci (China) 24:2004–2011. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Biología Vegetal II, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
  2. 2.Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderUSA
  3. 3.Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y TecnologíaUniversidad Rey Juan CarlosMóstolesSpain
  4. 4.Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithAustralia
  5. 5.Global Centre for Land Based InnovationUniversity of Western SydneyPenrith SouthAustralia

Personalised recommendations