Skip to main content

Advertisement

Log in

Competition between Zea mays genotypes with different root morphological and physiological traits is dependent on phosphorus forms and supply patterns

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Each genotype within species has a particular combination of root morphological and/or physiological traits to adapt to phosphorus-limited environments, which can lead to its unique plant fitness and competitive ability. Yet, how the various phosphorus environments affect the competition between genotypes remains obscure.

Methods

Two maize (Zea mays L.) genotypes (XY335 and HMY, bred in nutrient-rich and nutrient-poor environments, respectively) were grown in monoculture and mixture in phosphorus-limited soil with homogeneous or heterogeneous supply patterns and inorganic (Pinorg) or organic phosphorus (Porg) forms.

Results

In homogeneous Pinorg and Porg environments, XY335 had higher root length and surface area, but lower mycorrhizal colonization and the acid phosphatase and phytase activities in the rhizosphere, than HMY. In heterogeneous phosphorus environments, XY335 had higher root proliferation than HMY. The root trait divergence influenced the competition in mixture: XY335 had a competitive advantage compared to HMY under heterogeneous phosphorus conditions, whereas HMY exhibited a stronger competitive ability in homogeneous phosphorus treatments; these reverse trends were more significant in the Porg than Pinorg treatments.

Conclusions

The results suggested the importance of root physiological traits in homogeneous phosphorus-limited soil environments, whereas P acquisition strategy based on root morphological traits favours heterogeneous phosphorus supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott JM, Stachowicz JJ (2016) The relative importance of trait vs. genetic differentiation for the outcome of interactions among plant genotypes. Ecology 97:84–94

    Article  PubMed  Google Scholar 

  • Adler PB, Fajardo A, Kleinhesselink AR, Kraft NJ (2013) Trait-based tests of coexistence mechanisms. Ecol Lett 16:1294–1306

    Article  PubMed  Google Scholar 

  • Barot S, Bornhofen S, Boudsocq S, Raynaud X, Loeuille N (2016) Evolution of nutrient acquisition: when space matters. Funct Ecol 30:283–294

    Article  Google Scholar 

  • Bates TR, Lynch JP (2001) Root hairs confer a competitive advantage under low phosphorus availability. Plant Soil 236:243–250

    Article  CAS  Google Scholar 

  • Bennett JA, Riibak K, Tamme R, Lewis RJ, Pärtel M (2016) The reciprocal relationship between competition and intraspecific trait variation. J Ecol 104:1410–1420

    Article  Google Scholar 

  • Cahill JF (2013) Plant competition: can understanding trait-behavior linkages offer a new perspective on very old questions. Nova Acta Leopold 114:115–125

    Google Scholar 

  • Ceulemans T, Bode S, Bollyn J, Harpole W, Coorevits C, Peeters G, Acker KV, Smolders E, Boeckx P, Honnay O (2017) Phosphorus resource partitioning shapes phosphorus acquisition and plant species abundance in grasslands. Nat Plant 3:16224

    Article  CAS  Google Scholar 

  • Chamberlain SA, Bronstein JL, Rudgers JA (2014) How context dependent are species interactions? Ecol Lett 17:881–890

    Article  PubMed  Google Scholar 

  • Chen W, Koide RT, Adams TS, DeForest JL, Cheng L, Eissenstat DM (2016) Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proc Natl Acad Sci U S A 113:8741–8746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Koide RT, Eissenstat DM (2017) Root morphology and mycorrhizal type strongly influence root production in nutrient hot spots of mixed forests. J Ecol 106:148–156. https://doi.org/10.1111/1365-2745.12800

    Article  CAS  Google Scholar 

  • Chesson P (2000) Mechanisms of maintenance of species diversity. Ann Rev Ecol Syst 31:343–366

    Article  Google Scholar 

  • Chu Q, Wang X, Yang Y, Chen F, Zhang F, Feng G (2013) Mycorrhizal responsiveness of maize (Zea mays L.) genotypes as related to releasing date and available P content in soil. Mycorrhiza 23:497–505

    Article  CAS  PubMed  Google Scholar 

  • Craine JM, Dybzinski R (2013) Mechanisms of plant competition for nutrients, water and light. Funct Ecol 27:833–840

    Article  Google Scholar 

  • Dalal RC (1997) Long-term phosphorus trends in Vertisols under continuous cereal cropping. Aust J Soil Res 35:327–339

    Article  Google Scholar 

  • Day KJ, John EA, Hutchings MJ (2003) The effects of spatially heterogeneous nutrient supply on yield, intensity of competition and root placement patterns in Briza media and Festuca ovina. Funct Ecol 17:454–463

    Article  Google Scholar 

  • de Kroon H, Visser EJW, Huber H, Mommer L, Hutchings MJ (2009) A modular concept of plant foraging behaviour: the interplay between local responses and systemic control. Plant Cell Environ 32:704–712

    Article  CAS  PubMed  Google Scholar 

  • Forde BG (2002) Local and long-range signaling pathways regulating plant responses to nitrate. Ann rev. Plant Biol 53:203–224

    Article  CAS  Google Scholar 

  • Fort F, Cruz P, Jouany C, Field K (2014) Hierarchy of root functional trait values and plasticity drive early-stage competition for water and phosphorus among grasses. Funct Ecol 28:1030–1040

    Article  Google Scholar 

  • Fransen B, de Kroon H (2001) Long-term disadvantages of selective root placement: root proliferation and shoot biomass of two perennial grass species in a 2-year experiment. J Ecol 89:711–722

    Article  Google Scholar 

  • Fransen B, de Kroon H, Berendse F (1998) Root morphological plasticity and nutrient acquisition of perennial grass species from habitats of different nutrient availability. Oecologia 115:351–358

    Article  PubMed  Google Scholar 

  • Grime JP (1994) The role of plasticity in exploiting environmental heterogeneity. In: Caldwell MM, Pearcy RW (eds) Exploitation of environmental heterogeneity by plants: ecophysiological processes above- and belowground. Academic Press, San Diego, pp 1–19

    Google Scholar 

  • Grime JP, Crick JC, Rincon JE (1986) The ecological significance of plasticity. In: Jennings DH and Trewavas AJ (eds), Plasticity in Plants. Biologists Limited, pp. 5–29

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24

    Article  Google Scholar 

  • Jiao X, Lyu Y, Wu X, Li H, Cheng L, Zhang C, Yuan L, Jiang R, Jiang B, Rengel Z, Zhang F, Davies W, Shen J (2016) Grain production versus resource and environmental costs: towards increasing sustainability of nutrient use in China. J Exp Bot 67:4935–4949

    Article  CAS  PubMed  Google Scholar 

  • Johnson CM, Ulrich A (1959) Analytical methods for use in plant analysis. University of California, Agricultural Experiment Station, Berkeley No 766:25–78

  • Kraft NJ, Godoy O, Levine JM (2015) Plant functional traits and the multidimensional nature of species coexistence. Proc Natl Acad Sci U S A 112:797–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103

    Article  PubMed  Google Scholar 

  • Lambers H, Albornoz F, Kotula L, Laliberté E, Ranathunge K, Teste FP, Zemunik G (2017) How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems. Plant Soil. https://doi.org/10.1007/s11104-017-3427-2

  • Li H, Ma Q, Li H, Zhang F, Rengel Z, Shen J (2014) Root morphological responses to localized nutrient supply differ among crop species with contrasting root traits. Plant Soil 376:151–163

    Article  CAS  Google Scholar 

  • Li HG, Liu J, Li G, Shen J, Bergström L, Zhang F (2015) Past, present, and future use of phosphorus in Chinese agriculture and its influence on phosphorus losses. Ambio 44:274–285

    Article  CAS  PubMed Central  Google Scholar 

  • Li H, Wang X, Rengel Z, Ma Q, Zhang F, Shen J (2016) Root over-production in heterogeneous nutrient environment has no negative effects on Zea mays shoot growth in the field. Plant Soil 409:405–417

    Article  CAS  Google Scholar 

  • Li H, Liu B, McCormack M, Ma Z, Guo D (2017) Diverse belowground resource strategies underlie plant species coexistence and spatial distribution in three grasslands along a precipitation gradient. New Phytol 216:1140–1150

    Article  PubMed  Google Scholar 

  • Liu Y, Mi G, Chen F, Zhang J, Zhang F (2004) Rhizosphere effect and root growth of two maize (Zea mays L.) genotypes with contrasting P efficiency at low P availability. Plant Sci 167:217–223

    Article  CAS  Google Scholar 

  • Liu B, Li H, Zhu B, Koide RT, Eissenstat DM, Guo D (2015) Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. New Phytol 208:125–136

    Article  PubMed  Google Scholar 

  • Lyu Y, Tang H, Li H, Zhang F, Rengel Z, Whalley WR, Shen J (2016) Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply. Front Plant Sci 7:1939

    Article  PubMed  PubMed Central  Google Scholar 

  • MacArthur R, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. Am Nat 101:377–385

    Article  Google Scholar 

  • Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13:1085–1093

    Article  PubMed  Google Scholar 

  • McNickle GG, Deyholos MK, Cahill JF (2016) Nutrient foraging behaviour of four co-occurring perennial grassland plant species alone does not predict behaviour with neighbours. Funct Ecol 30:420–430

    Article  Google Scholar 

  • Milla R, Morente-López J, Alonso-Rodrigo JM, Martín-Robles N, Chapin FS (2014) Shifts and disruptions in resource-use trait syndromes during the evolution of herbaceous crops. Proc R Soc Biol Sci 281:20141429

    Article  Google Scholar 

  • Mommer L, Visser EJ, van Ruijven J, de Caluwe H, Pierik R, de Kroon H (2011) Contrasting root behaviour in two grass species: a test of functionality in dynamic heterogeneous conditions. Plant Soil 344:347–360

    Article  CAS  Google Scholar 

  • Mommer L, Kirkegaard J, van Ruijven J (2016) Root–root interactions: towards a rhizosphere framework. Trends Plant Sci 21:209–217

    Article  CAS  PubMed  Google Scholar 

  • Morris RA, Garrity DP (1993) Resource capture and utilization in intercropping: water. Field Crops Res 34:303–317

    Article  Google Scholar 

  • Nasto MK, Osborne BB, Lekberg Y, Asner GP, Balzotti CS, Porder S, Taylor PG, Townsend AR, Cleveland CC (2017) Nutrient acquisition, soil phosphorus partitioning and competition among trees in a lowland tropical rain forest. New Phytol 214:1506–1517

    Article  CAS  PubMed  Google Scholar 

  • Neumann G (2006) Quantitative determination of acid phosphatase activity in the rhizosphere and on the root surface. In: Jones, D.L. (Eds.), 4.2 Biochemistry. In: Luster, J., Finlay, R. (Eds.), Handbook of Methods used in Rhizosphere Research - Online Edition

  • Pearse SJ, Veneklaas EJ, Cawthray G, Bolland MD, Lambers H (2006) Triticum aestivum shows a greater biomass response to a supply of aluminium phosphate than Lupinus albus, despite releasing fewer carboxylates into the rhizosphere. New Phytol 169:515–524

    Article  CAS  PubMed  Google Scholar 

  • Prieto I, Violle C, Barre P, Durand JL, Ghesquiere M, Litrico I (2015) Complementary effects of species and genetic diversity on productivity and stability of sown grasslands. Nat Plant 1:15033

    Article  CAS  Google Scholar 

  • Richardson A, Hadobas P, Hayes J (2000) Acid phosphomonoesterase and phytase activities of wheat (Triticum aestivum L.) roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture. Plant Cell Environ 23:397–405

    Article  CAS  Google Scholar 

  • Richardson AE, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, Harvey PR, Ryan MH, Veneklaas EJ, Lambers H, Oberson A, Culvenor RA, Simpson RJ (2011) Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349:121–156

    Article  CAS  Google Scholar 

  • Schmidt JE, Bowles TM, Gaudin AC (2016) Using ancient traits to convert soil health into crop yield: impact of selection on maize root and rhizosphere function. Front Plant Sci 7:373

    PubMed  PubMed Central  Google Scholar 

  • Semchenko M, Lepik A, Abakumova M, Zobel K (2017) Different sets of belowground traits predict the ability of plant species to suppress and tolerate their competitors. Plant Soil. https://doi.org/10.1007/s11104-017-3282-1

  • Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F (2011) Phosphorus dynamics: from soil to plant. Plant Physiol 156:997–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Li C, Mi G, Li L, Yuan L, Jiang R, Zhang F (2013) Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. J Exp Bot 64:1181–1192

    Article  CAS  PubMed  Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and Genetical aspects of mycorrhizae. INRA Press, Paris, pp 217–221

    Google Scholar 

  • Turner BL, Cade-Menun BJ, Condron LM, Newman S (2005) Extraction of soil organic phosphorus. Talanta 66:294–306

    Article  CAS  PubMed  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Wang XX, Hoffland E, Feng G, Kuyper TW (2017) Phosphate uptake from phytate due to hyphae-mediated phytase activity by arbuscular mycorrhizal maize. Front Plant Sci 8:684

    Article  PubMed  PubMed Central  Google Scholar 

  • Wen Z, Li H, Shen J, Rengel Z (2017) Maize responds to low shoot P concentration by altering root morphology rather than increasing root exudation. Plant Soil 416:377–389

    Article  CAS  Google Scholar 

  • Wissuwa M, Mazzola M, Picard C (2009) Novel approaches in plant breeding for rhizosphere-related traits. Plant Soil 321:409–430

    Article  CAS  Google Scholar 

  • Wood SA, Karp DS, DeClerck F, Kremen C, Naeem S, Palm CA (2015) Functional traits in agriculture: agrobiodiversity and ecosystem services. Trends Ecol Evol 30:531–539

    Article  PubMed  Google Scholar 

  • Zhang D, Zhang C, Tang X, Li H, Zhang F, Rengel Z, Whalley WR, Davies W, Shen J (2016) Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize. New Phytol 209:823–831

    Article  CAS  PubMed  Google Scholar 

  • Zuppinger-Dingley D, Schmid B, Petermann JS, Yadav V, De Deyn GB, Flynn DF (2014) Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515:108–111

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (31772402, 31330070), National Key Research and Development Program of China (2016YFE0101100, 2017YFD0200200) and the Innovative Group Grant of the National Science Foundation of China (31421092). ZR is supported by Australian Research Council (DP160104434).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbo Shen.

Additional information

Responsible Editor: Ismail Cakmak

Electronic supplementary material

ESM 1

(DOCX 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhang, D., Wang, X. et al. Competition between Zea mays genotypes with different root morphological and physiological traits is dependent on phosphorus forms and supply patterns. Plant Soil 434, 125–137 (2019). https://doi.org/10.1007/s11104-018-3616-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3616-7

Keywords

Navigation