Plant and Soil

, Volume 424, Issue 1–2, pp 319–334 | Cite as

Linkages between root traits, soil fungi and aggregate stability in tropical plant communities along a successional vegetation gradient

  • Julien Demenois
  • Freddy Rey
  • Thomas Ibanez
  • Alexia Stokes
  • Fabian Carriconde
Regular Article



Determining which abiotic and biotic factors influence soil aggregate stability (MWD) in tropical climates is often confounded by soil type. We aimed to better understand the influence of soil physical and chemical components, vegetation and fungal abundance on MWD of a Ferralsol along a successional gradient of vegetation in New Caledonia.


Five plant communities (sedge dominated, open sclerophyllous shrubland, Arillastrum forest, Nothofagus forest and mixed rainforest) were studied. For each community, MWD, soil texture, soil organic carbon (SOC), iron (Fe) and aluminium (Al) sesquioxides, root length density (RLD), specific root length (SRL), root mass density (RMD) and fungal abundance were measured. Generalized linear models were used to predict MWD from soil and plant trait data.


The best prediction of MWD combined abiotic and biotic factors. Along the gradient, Fe increased MWD, while root traits, fungal abundance and SOC modified MWD. From the sedge-dominated community to Arillastrum forest, RMD and SOC increased MWD, while between Nothofagus and mixed rainforest, it was likely that floristic composition and fungal communities influenced MWD.


Plant community, the intrinsic nature of Ferralsol and fungal abundance all modified MWD. However, the specific effect of microbial communities should be addressed through a metagenomics approach to elucidate microbial interactions with plant communities.


Ferralsol Erosion Abiotic factors Biotic factors Soil aggregation Ultramafic substrates New Caledonia 



Arbuscular mycorrhiza


Ectomycorrhizal fungi


Mean weight diameter


Principal Component Analysis


Quantitative PCR


Ribosomal DNA


Root length density


Root mass density


Specific root length


Specific leaf area


Soil organic carbon



We gratefully acknowledge the field staff of IAC (‘Unité SARA’): A. Bouarat, R. Guiglion, J.P. Lataï and A. Pain for their substantial assistance. We are thankful to our colleagues at IAC who gave substantial help for qPCR analyses: M. Lelièvre, K. Letellier, N. Robert, J. Soewarto and S. Gigante. We thank the US191 LAMA at IRD Nouméa who carried out the sesquioxides measurements. Fieldwork and laboratory analyses were funded by INRA, IAC and through a collaboration agreement between IAC and Société Le Nickel (agreement IAC-SLN n°DE2013-041). We thank the French Ministry of Agriculture for funding a PhD bursary (J. Demenois). Finally, we thank the anonymous reviewers for their helpful comments on the manuscript. In memoriam: we dedicate this paper to Christian Papineau who spent a large part of his life studying Arillastrum forests.

Supplementary material

11104_2017_3529_Fig5_ESM.gif (89 kb)
Supplementary Fig. 1

Types of plant communities along the successional vegetation gradient from shrubland to forest. Retrocessions due to disturbances are not shown. (GIF 89 kb)

11104_2017_3529_MOESM1_ESM.tif (9.3 mb)
High resolution image (TIFF 9522 kb)
11104_2017_3529_Fig6_ESM.gif (17 kb)
Supplementary Fig. 2

Non-metric dimensional scaling (NMDS) performed on Bray-Curtis dissimilarity indices for the five plant communities. S is Sedge-dominated formation; Mq is shrubland with Tristaniopsis glauca; Ag is Arillastrum forest; Na is Nothofagus forest and M is mixed rainforest. (GIF 17 kb)

11104_2017_3529_MOESM2_ESM.tif (6 mb)
High resolution image (TIFF 6181 kb)
11104_2017_3529_Fig7_ESM.gif (63 kb)
Supplementary Fig. 3

Spearman correlations between soil characteristics, root traits and fungal biomass. *** indicates correlations with P < 0.001 for ρ > 0.7. The size of the circle is proportional to ρ. Abbreviations are: Fe2O3: Fe sesquioxides; Al2O3: Al sesquioxides; SOC: soil organic carbon; RLD: root length density; RMD: root mass density; SRL: specific root length; FR: % of fine roots, VFR: % of very fine roots. (GIF 63 kb)

11104_2017_3529_MOESM3_ESM.tif (11.1 mb)
High resolution image (TIFF 11360 kb)


  1. Afnor (2005) NF X 31–515 - Mesure de la stabilité d'agrégats de sols pour l'évaluation de la sensibilité à la battance et à l'érosion hydrique. Afnor, FranceGoogle Scholar
  2. Amézketa E (1999) Soil aggregate stability: a review. J Sustain Agric 14:83–151. CrossRefGoogle Scholar
  3. Amir H, Ducousso M (2010) Les bactéries et les champignons du sol sur roches ultramafiques. In Mines et environnement en Nouvelle-Calédonie: les milieux sur substrats ultramafiques et leur restauration. IAC Editions edn. pp 129–146: New CaledoniaGoogle Scholar
  4. Angers DA, Caron J (1998) Plant-induced changes in soil structure: processes and feedbacks. Biogeochemistry 42:55–72CrossRefGoogle Scholar
  5. Barthès B, Roose E (2002) Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena 47:133–149CrossRefGoogle Scholar
  6. Barton K (2016) {MuMIn}: multi-model inference, {R} package version 1.15.6Google Scholar
  7. Braun-Blanquet J, Fuller G, Conard H, (1932) Plant sociology; the study of plant communities. McGraw-Hill Book Company Inc. ednGoogle Scholar
  8. Brooks RR (1987) Serpentine and its vegetation: a multidisciplinary approach. Dioscorides Press, Portland, OregonGoogle Scholar
  9. Burri K, Graf F, Böll A (2009) Revegetation measures improve soil aggregate stability: a case study of a landslide area in Central Switzerland. For Snow Landsc Res 82:45–60Google Scholar
  10. Chemidlin Prévost-Bouré N, Christen R, Dequiedt S, Mougel C, Leliévre M, Jolivet C, Shahbazkia HR, Guillou L, Arrouays D, Ranjard L (2011) Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS One 6(9):e24166. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Connell JH, Lowman MD (1989) Low-diversity tropical rain forests: some possible mechanisms for their existence. Am Nat 134:88–119CrossRefGoogle Scholar
  12. Dalal RC, Bridge BJ (1996) Aggregation and organic matter storage in sub-humid and semiarid soils. M. R. Carter and B. A. Stewart, Boca Raton, pp 263–307Google Scholar
  13. Demenois J, Carriconde F, Bonaventure P, Maeght J-L, Stokes A, Rey F (2018) Impact of plant root functional traits and associated mycorrhizas on the aggregate stability of a tropical Ferralsol. Geoderma 312:6–16. CrossRefGoogle Scholar
  14. Demenois J, Carriconde F, Rey F, Stokes A (2017a) Tropical plant communities modifiy soil aggregate stability along a successional vegetation gradient on a Ferralsol. Ecol Eng 109:161–168. CrossRefGoogle Scholar
  15. Demenois J, Ibanez T, Read DJ, Carriconde F (2017b) Comparison of two monodominant species in New Caledonia: floristic diversity and ecological strategies of Arillastrum gummiferum (Myrtaceae) and Nothofagus aequilateralis (Nothofagaceae) rainforests. Aust J Bot 65:11–21. CrossRefGoogle Scholar
  16. Dickie IA (2007) Host preference, niches and fungal diversity. New Phytol 174:230–233CrossRefPubMedGoogle Scholar
  17. Dugain F (1953) Premières observations sur l'érosion en Nouvelle-Calédonie. L'Agronomie Tropicale VIII: 466–475Google Scholar
  18. Eisenhauer N, Beßler H et al (2010) Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91:485–496CrossRefPubMedGoogle Scholar
  19. Fierer N, Leff JW et al (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. PNAS 109:21390–21395CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gourmelon V, Maggia L, Powell JR, Gigante S, Hortal S, Gueunier C, Letellier K, Carriconde F (2016) Environmental and geographical factors structure soil microbial diversity in New Caledonian ultramafic substrates: a metagenomic approach. PLoS One 11:e0167405. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Graf F, Frei M (2013) Soil aggregate stability related to soil density, root length, and mycorrhiza using site-specific Alnus incana and Melanogaster variegatus s.l. Ecol Eng 57:314–323. CrossRefGoogle Scholar
  22. Grueber CE, Nakagawa R, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711. CrossRefPubMedGoogle Scholar
  23. Guillot S, Hattori K (2013) Serpentinites: essential roles in geodynamics, arc volcanism, sustainable development, and the origin of life. Elements 9:95–98CrossRefGoogle Scholar
  24. Gyssels G, Poesen J et al (2005) Impact of plant roots on the resistance of soils to erosion by water: a review. Prog Phys Geogr 29:189–217CrossRefGoogle Scholar
  25. Harrison S, Rajakaruna N (2011) Serpentine: the evolution and ecology of a model system. University of California Press, Berkeley and Los AngelesGoogle Scholar
  26. Isnard S, L’huillier L, Rigault F, Jaffré T (2016) How did the ultramafic soils shape the flora of the New Caledonian hotspot? Plant Soil 403:53–76. CrossRefGoogle Scholar
  27. Jaffré T (1970) Les groupements végétaux des sols miniers de basse altitude du Sud de la Nouvelle-Calédonie. ORSTOM, New CaledoniaGoogle Scholar
  28. Jastrow JD, Miller RM, Lussenhopet J (1998) Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol Biochem 30(7):905–916CrossRefGoogle Scholar
  29. Kohler J, Roldán A et al (2016) Unraveling the role of hyphal networks from arbuscular mycorrhizal fungi in aggregate stabilization of semiarid soils with different textures and carbonate contents. Plant Soil 410(1):273–281Google Scholar
  30. Kruskal JB (1964) Non metric multidimensional scaling: a numerical method. Psychometrika 29:115–129CrossRefGoogle Scholar
  31. L'Huillier L, Jaffré T, Wulff A (2010) Mines et environnement en Nouvelle-Calédonie: les milieux sur substrats ultramafiques et leur restauration., New CaledoniaGoogle Scholar
  32. Le Bissonnais Y, Arrouays D (1997) Aggregate stability and assessment of soil crustability and erodibility: II: application to humic loamy soils with various organic carbon contents. Eur J Soil Sci 48:39–48CrossRefGoogle Scholar
  33. Le Bissonnais Y (1988) Comportement d'agrégats terreux soumis à l'action de l'eau: analyse des mécanismes de désagrégation. Agronomie 8:915–924CrossRefGoogle Scholar
  34. Le Bissonnais Y (1996) Aggregate stability and assessment of soil crustability and erodibility: I. theory and methodology. Eur J Soil Sci 47:425–437CrossRefGoogle Scholar
  35. Le Bissonnais Y, Prieto I, Roumet C, Nespoulous J, Metayer J, Huon S, Villatoro M, Stokes A (2017, in press) Soil aggregate stability in a range of agro-ecosystems and climates: effect of plant roots versus soil characteristics. Plant Soil doi:
  36. Losfeld G, L'Huillier L, Fogliani B, Jaffré T, Grison C (2015) Mining in New Caledonia: environmental stakes and restoration opportunities. Environ Sci Pollut Res 22(8):5592–5607CrossRefGoogle Scholar
  37. Lynch JM, Bragg E (1985) Microorganisms and soil aggregate stability. Adv Soil Sci 2:133–171CrossRefGoogle Scholar
  38. Martins MR, Corá JE, Jorge RF, Marcelo AV (2009) Crop type influences soil aggregation and organic matter under no-tillage. Soil Tillage Res 104:22–29CrossRefGoogle Scholar
  39. McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, Helmisaari H-S, Hobbie EA, Iversen CM, Jackson RB, Leppälammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M (2015) Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol 207:505–518. CrossRefPubMedGoogle Scholar
  40. McCoy S, Jaffré T, Rigault F, Ash JE (1999) Fire and succession in the ultramafic maquis of New Caledonia. J Biogeogr 26:579–594. CrossRefGoogle Scholar
  41. Mehra OP (1958) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clay Clay Miner 7:317–327CrossRefGoogle Scholar
  42. Miller RM, Jastrow JD (1990) Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biol Biochem 22:579–584CrossRefGoogle Scholar
  43. Morat P, Jaffré T, Tronchet F, Munzinger J, Pillon Y, Veillon JM, Chalopin M (2012) The taxonomic database «FLORICAL» and characteristics of the indigenous flora of New Caledonia. Adansonia 34(2):177–219CrossRefGoogle Scholar
  44. Oades JM (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil:319–337Google Scholar
  45. Oades JM (1993) The role of biology in the formation, stabilization and degradation of soil structure. Geoderma 56:377–400CrossRefGoogle Scholar
  46. O'Dell RE, Claassen VP (2011) Restoration and revegetation of harsh soils. In: Harrison S, Rajakaruna N (eds) Serpentine: the evolution and ecology of a model system. University of California Press, Berkeley and Los AngelesGoogle Scholar
  47. Oades J, Waters A (1991) Aggregate hierarchy in soils. Aust J Soil Res 29:815–828. CrossRefGoogle Scholar
  48. Papineau C (1989) Le chêne-gomme (Arillastrum gummiferum) en Nouvelle-Calédonie. ENITEF, NancyGoogle Scholar
  49. Pérès G, Cluzeau D et al (2013) Mechanisms linking plant community properties to soil aggregate stability in an experimental grassland plant diversity gradient. Plant Soil 373:285–299CrossRefGoogle Scholar
  50. Pérez-Harguindeguy N, Díaz S et al (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234CrossRefGoogle Scholar
  51. Pierret A, Gonkhamdee S, Jourdan C, Maeght J-L (2013) IJ_Rhizo: an open-source software to measure scanned images of root samples. Plant Soil 373:531–539. CrossRefGoogle Scholar
  52. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  53. Raidl S, Bonfigli R, Agerer R (2005) Calibration of quantitative real-time Taqman PCR by correlation with hyphal biomass and ITS copies in mycelia of Piloderma croceum. Plant Biol 7:713–717CrossRefPubMedGoogle Scholar
  54. Read J, Hope GS (1996) Ecology of Nothofagus forests of New Guinea and New Caledonia. In: Veblen TT, Hill RS, Read J (eds) The ecology and biogeography of Nothofagus forests. University of Yale Press, New HavenGoogle Scholar
  55. Read J, Jaffré T (2013) Population dynamics of canopy trees in New Caledonian rain forests: are monodominant Nothofagus (Nothofagaceae) forests successional to mixed rain forests? J Trop Ecol 29:485–499. CrossRefGoogle Scholar
  56. Read J, Jaffré T, Ferris JM, Mc Coy S, Hope GS (2006) Does soil determine the boundaries of monodominant rain forest with adjacent mixed rain forest and maquis on ultramafic soils in New Caledonia? J Biogeogr 33:1055–1065CrossRefGoogle Scholar
  57. Reinhart KO, Nichols KA, Petersen M, Vermeire LT (2015) Soil aggregate stability was an uncertain predictor of ecosystem functioning in a temperate and semiarid grassland. Ecosphere 6:238. CrossRefGoogle Scholar
  58. Rillig MC, Aguilar-Trigueros CA, Bergmann J, Verbruggen E, Veresoglou SD, Lehmann A (2015) Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol 205:1385–1388CrossRefPubMedGoogle Scholar
  59. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53. CrossRefPubMedGoogle Scholar
  60. Rillig MC, Wright SF, Eviner VT (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333CrossRefGoogle Scholar
  61. Sebert H (1874). Notice sur les bois de la Nouvelle-Calédonie, leur nature, leur exploitation et leurs propriétés mécaniques et industrielles. pp 280Google Scholar
  62. Sourkova M, Frouz J et al (2005) Soil development and properties of microbial biomass succession in reclaimed post mining sites near Sokolov (Czech Republic) and near Cottbus (Germany). Geoderma 129:73–80CrossRefGoogle Scholar
  63. Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. Eur J Soil Sci 33:141–163CrossRefGoogle Scholar
  64. Vainio EJ, Hantula J (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 8:927–936CrossRefGoogle Scholar
  65. van der Ent A, Rajakaruna N, Boyd R, Echevarria G, Repin R, Williams D (2015) Global research on ultramafic (serpentine) ecosystems (8th International Conference on Serpentine Ecology in Sabah, Malaysia): a summary and synthesis. Aust J Bot 63:1–16Google Scholar
  66. Virot R (1956) La végétation Canaque. (Museum National d’Histoire Naturelle)Google Scholar
  67. Wallander H, Ekblad A, Godbold DL, Johnson D, Bahr A, Baldrian P, Björk RG, Kieliszewska-Rokicka B, Kjøller R, Kraigher H, Plassard C, Rudawska M (2013) Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forests soils – A review. Soil Biol Biochem 57:1034–1047. CrossRefGoogle Scholar
  68. Wang X, Yost RS, Linquistet BA (2001) Soil aggregate size affects phosphorus desorption from highly weathered soils and plant growth. Soil Sci Soc Am J 65:139–146CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Julien Demenois
    • 1
    • 2
  • Freddy Rey
    • 3
  • Thomas Ibanez
    • 2
  • Alexia Stokes
    • 4
  • Fabian Carriconde
    • 2
  1. 1.Institut Agronomique néo-Calédonien (IAC), « Equipe Sol & Végétation » (SolVeg)ParisFrance
  2. 2.Institut Agronomique néo-Calédonien (IAC), « Equipe Sol & Végétation » (SolVeg)NouméaNew Caledonia
  3. 3.University of Grenoble Alpes, Irstea, UR EMGRSaint Martin-d’Hères cedexFrance
  4. 4.Inra, Amap, Ird, Cnrs, CiradUniversity of MontpellierMontpellierFrance

Personalised recommendations