Plant and Soil

, Volume 403, Issue 1–2, pp 53–76 | Cite as

How did the ultramafic soils shape the flora of the New Caledonian hotspot?

  • Sandrine Isnard
  • Laurent L’huillier
  • Frédéric Rigault
  • Tanguy Jaffré
Regular Article



New Caledonia is renowned as one of the world’s most significant biodiversity hotpots. The nutrient-deficiency and cations imbalances of ultramafic soils, which cover a third of the island, harbor a disproportionally high proportion of the plant diversity and endemism of New Caledonia.


This review explores how ultramafic soils have influenced the exceptional endemism and richness of New Caledonia trough the concomitant occurrences of habitat patchiness, climatic instability, environmental gradient, and edaphic heterogeneity of ultramafic soils. We focus on the unique ‘maquis’ vegetation where selective pressures by nutrient deficiency and trace element surplus are at their acme. We aim to synthesize our current understanding of diversification and speciation of lineages that have been phylogenetically studied to date.


Fragmentation of the peridotite mantle in isolated massifs, and as such spatial heterogeneity of ultramafic soils types, appear to promote plant endemism and speciation. Repeated independent dispersal events of pre-adapted species and persistence of paleo-endemic lineages have contributed to the phylogenetic diversity and the endemism of the ultramafic flora. Finally, historical climatic instability has caused shifts of rain forest species in refugia thereby favoring the extension of maquis species.


Diversification Endemism Forests Harsh edaphic conditions Maquis Nutritional strategies Preadaptation Species richness 



We thank the Herbarium of IRD in Noumea (NOU), the National Museum of Natural History in Paris (P), and the Missouri Botanical Gardens in St. Louis (MO) whose collections have served as sources of information. Our thanks also go to botanists undertaking taxonomic revisions of the families of the New Caledonian flora, who provided information on the studied species: J.W. Dawson, the late Lyn A. Craven, N. Snow for Myrtaceae, M. Callmander for Pandanaceae, H. Hopskin and Y. Pillon for Cunoniaceae, P.P. Lowry and F. Tronchet for Araliaceae, J. Munzinger & U. Swenson for Sapotaceae, M. Schmid for Primulaceae, P. Morat for Malvaceae, F. Achille, L. Barrabé and A. Mouly for Rubiaceae. We also thank Robin Pouteau (IAC) and anonymous reviewers for their valuable comments on the manuscript. We thank Hans Lambert and Antony Van der Ent for their invitation to submit this paper and their input to increase the clarity of this manuscript.


  1. Ackerly D (2004) Adaptation, niche conservatism, and convergence: comparative studies of leaf evolution in the California chaparral. Am Nat 163:654–671. doi: 10.1086/383062 PubMedCrossRefGoogle Scholar
  2. Alford ER, Pilon-Smiths EAH, Paschke MW (2010) Metallophytes—a view from the rhizosphere. Plant Soil 337:33–50CrossRefGoogle Scholar
  3. Amir H, Perrier N, Rigault F, Jaffré T (2007) Relationships between Ni hyperaccumulation and mycorrhizal status of different endemic plant species from New Caledonian ultramafic sols. Plant Soil 293:23–35CrossRefGoogle Scholar
  4. Amir H, Jourand P, Cavaloc Y, Ducousso M (2013) Role of mycorrhizal fungi on the alleviation of heavy metal toxicity on plant. In: Solaiman Z, Abbott L, Varma A (eds) Mycorrhizal fungi: use in sustainable agriculture and forestry. Springer, HeidelbergGoogle Scholar
  5. Anacker BL (2011) Phylogenetic patterns of endemism and diversity. In: Harrison SP, Rajakaruma N (eds) Serpentine: the evolution and ecology of a model system. University of California Press, Los AngelesGoogle Scholar
  6. Anacker BL (2014) The nature of serpentine endemism. Am J Bot 101:219–224. doi: 10.3732/ajb.1300349 PubMedCrossRefGoogle Scholar
  7. Anacker BL, Whittall JB, Goldberg EE, Harrison SP (2011) Origins and consequences of serpentine endemism in the California flora. Evolution 65:365–376PubMedCrossRefGoogle Scholar
  8. Aubréville A, Leroy J-F, MacKee HS, Morat P (eds) (1967-) Flore de la Nouvelle-Calédonie et Dépendances. Muséum National d’Histoire Naturelle, ParisGoogle Scholar
  9. Bani A, Echevarria G, Montargès-Pelletier E, Gjoka F, Sulçe S, Morel JL (2014) Pedogenesis and nickel biogeochemistry in a typical Albanian ultramafic toposequence. Environ Monit Assess 186:4431–4442. doi: 10.1007/s10661-014-3709-6 PubMedCrossRefGoogle Scholar
  10. Barrabé L (2013) Systématique et Evolution du genre Psychotria (Rubiaceae) en Nouvelle-Calédonie. Université de la Nouvelle-CalédonieGoogle Scholar
  11. Barrabe L, Maggia L, Pillon Y, Rigault F, Mouly A, Davis AP, Buerki S (2014) New Caledonian lineages of Psychotria (Rubiaceae) reveal different evolutionary histories and the largest documented plant radiation for the archipelago. Mol Phylogenet Evol 71:15–35. doi: 10.1016/j.ympev.2013.10.020 PubMedCrossRefGoogle Scholar
  12. Bartish IV, Swenson U, Munzinger J, Anderberg AA (2005) Phylogenetic relationships among New Caledonian Sapotaceae (Ericales): molecular evidence for generic polyphyly and repeated dispersal. Am J Bot 92:667–673PubMedCrossRefGoogle Scholar
  13. Batianoff GN, Singh S (2001) Central Queensland serpentine landforms, plant ecology and endemism. S Afr J Sci 97:495–500Google Scholar
  14. Becquer T, Bourdon E, Petard J (1995) Disponibilité du nickel le long d’une toposéquence de sols développés sur roches ultramafiques de Nouvelle-Calédonie. C R Acad Sci II A 321:585–592Google Scholar
  15. Becquer T, Rigault F, Jaffré T (2002) Nickel bioavailability assessed by ion exchange resin in the field. Commun Soil Sci Plant Anal 33:439–450CrossRefGoogle Scholar
  16. Birnbaum P, Ibanez T, Pouteau R, Vandrot H, Hequet V, Blanchard E, Jaffré T (2015) Environmental correlates for tree occurrences, species distribution and richness on a high-elevation tropical island. AoB Plants. doi: 10.1093/aobpla/plv075 PubMedPubMedCentralGoogle Scholar
  17. Borhidi A (1991) Phytogeography and vegetation ecology of Cuba. Akademiai Kiado, BudapestGoogle Scholar
  18. Borhidi A (2001) Phylogenetic trends in Ni-accumulating plants. S Afr J Sci 97:544–547Google Scholar
  19. Boyd RS, Jaffré T (2001) Phytoenrichment of soil content by Sebertia acuminata in New Caledonia and concept of elemental allelopathy. S Afr J Sci 97:535–538Google Scholar
  20. Boyd RS, Jaffré T (2009) Elemental concentration of eleven New Caledonian plant species from serpentine soils: elemental correlations and leaf age effects. Northeast Nat 16:93–110CrossRefGoogle Scholar
  21. Brady KU, Kruckeberg AR, Bradshaw HD Jr (2005) Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol Syst 36:243–266. doi: 10.1146/annurev.ecolsys.35.021103.105730 CrossRefGoogle Scholar
  22. Bremer K, Friis EM, Bremer B (2004) Molecular phylogenetic dating of asterid flowering plants shows early cretaceous diversification. Syst Biol 53:496–505PubMedCrossRefGoogle Scholar
  23. Brodribb TJ, Hill RS (1998) The photosynthetic drought physiology of a diverse group of Southern Hemisphere conifer species is correlated with minimum seasonal rainfall. Funct Ecol 12:465–471Google Scholar
  24. Brodribb TJ, Pittermann J, Coomes DA (2012) Elegance versus Speed: examining the Competition between Conifer and Angiosperm Trees. Int J Plant Sci 173:673–694Google Scholar
  25. Brooks RR (1987) Serpentine and its vegetation: a multidisciplinary approach viii. Geological Magazine 123. Croom Helm, Dioscorides Press, Kent. 454 ppGoogle Scholar
  26. Burgess J, Szlavecz K, Rajakaruna N, Swan C (2015) Ecotypic differentiation of mid-Atlantic Quercus species in response to ultramafic soils. Aust J Bot 63:308–323CrossRefGoogle Scholar
  27. Cacho NI, Strauss SY (2014) Occupation of bare habitats, an evolutionary precursor to soil specialization in plants. Proc Natl Acad Sci U S A 111:15132–15137PubMedPubMedCentralCrossRefGoogle Scholar
  28. Callahan DL, Roessner U, Dumontet V, De Livera AM, Doronila A, Baker AJM, Kolev SD (2012) Elemental and metabolite profiling of nickel hyperaccumulators from New Caledonia. Phytochemistry 81:80–89PubMedCrossRefGoogle Scholar
  29. Cecchi L, Gabbrielli R, Arnetoli M, Gonnelli C, Hasko A, Selvi F (2010) Evolutionary lineages of Ni-hyperaccumulation and systematics in European Alysseae (Brassicaceae): evidence from nrDNA sequence data. Ann Bot 106:751–767PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cecchi L, Coppi F, Selvi F (2011) Evolutionary dynamics of serpentine adaptation in Onosma (Boraginaceae) as revealed by ITS sequence data. Plant Syst Evol 297:185–199CrossRefGoogle Scholar
  31. Chaintreuil C, Rigault F, Moulin L, Jaffré T, Fardoux J, Guiraud E, Dreyfus B, Bailly X (2007) Nickel resistance determinants in Bradyrhizobium strains from nodules of the endemic New Caledonian legume Serianthes calycina. Appl Environ Microbiol 73:8018–8022PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chathuranga PKD, Dharmasena SKAT, Rajakaruna N, Iqbal MCM (2015) Growth and nickel uptake by serpentine and non-serpentine populations of Fimbristylis ovata (Cyperaceae) from Sri Lanka. Aust J Bot 63:128–133. doi: 10.1071/BT14232 Google Scholar
  33. Cheng C-H, Jien S-H, Iizuka Y, Tsai H, Chang Y-H, Hseu Z-Y (2011) Pedogenic chromium and nickel partitioning in serpentine soils along a toposequence. Soil Sci Soc Am J 75:659. doi: 10.2136/sssaj2010.0007 CrossRefGoogle Scholar
  34. Chevillotte V, Chardon G, Beauvais A, Maurizot P, Colin F (2006) Long-term tropical morphogenesis of New Caledonia (Southwest Pacific): importance of positive epeirogeny and climate change. Geomorphology 81:361–375CrossRefGoogle Scholar
  35. Chiarucci A, Rocchini D, Leonzio C, De Dominicis V (2001) A test of vegetation–environment relationship in serpentine soils of Tuscany, Italy. Ecol Res 16:627–639. doi: 10.1046/j.1440-1703.2001.00437.x CrossRefGoogle Scholar
  36. Contreras L, Pross J, Bijl PK, Koutsodendris A, Raine JI, van de Schootbrugge B, Brinkhuis H (2013) Early to Middle Eocene vegetation dynamics at the Wilkes Land Margin (Antarctica). Rev Palaeobot Palynol 197:119–142. doi: 10.1016/j.revpalbo.2013.05.009 CrossRefGoogle Scholar
  37. Cowling RM, Holmes PM (1992) Flora and vegetation. In: RM Cowling (ed) The ecology of fynbos: nutrients, fire and diversity. Oxford University PressGoogle Scholar
  38. Cowling RM, Lombard AT (2002) Heterogeneity, speciation/extinction history and climate: explaining regional plant diversity patterns in the Cape Floristic Region. Divers Distrib 8:163–179CrossRefGoogle Scholar
  39. De Kok R (2002) Are plant adaptations to growing on serpentine soil rare or common? A few case studies from New Caledonia. Adansonia 24:229–238Google Scholar
  40. Eibl JM, Plunkett GM, Lowry PP II (2011) Evolution of Polyscias sect. Tieghemopanax (Araliaceae) based on nuclear and chloroplast DNA sequence data. Adansonia 23:23–48Google Scholar
  41. Enright NJ, Hill RS (1995) Ecology of the southern conifers. Melbourne University Press, Carlton, AustraliaGoogle Scholar
  42. Enright NJ, Rigg L, Jaffré T (2001) Environmental controls on species composition along a (maquis) shrubland to forest gradient on ultramafics at Mt Do, New Caledonia. S Afr J Sci 97:573–580Google Scholar
  43. Enright NJ, Miller BP, Perry GLW (2003) Demography of the long-lived conifer Agathis ovata in maquis and rainforest, New Caledonia. J Veg Sci 14:625–636Google Scholar
  44. Enright NJ, Miller BP, Perry GLW, Goldblum D, Jaffré T (2014) Stress-tolerator leaf traits determine population dynamics in the endangered New Caledonian conifer Araucaria muelleri. Austral Ecol 39:60–71CrossRefGoogle Scholar
  45. Fernando DR, Woodrow E, Jaffré T, Dumontet V, Marshall AT, Baker AJM (2008) Foliar manganese accumulation by Maytenus fournieri (Celastraceae) in its native New Caledonia habitats: populational variations and localisation by x ray microanalysis. New Phytol 177:178–185PubMedGoogle Scholar
  46. Fritsch E (2012) Les sols. In: Bonvallot J, Gay J-C, Habert E (eds) Atlas de la Nouvelle-Calédonie. IRD & Congrès de la Nouvelle-Calédonie, MarseilleGoogle Scholar
  47. Garnier J, Quantin C, Guimarães E, Garg VK, Martins ES, Becquer T (2009) Understanding the genesis of ultramafic soils and catena dynamics in Niquelândia, Brazil. Geoderma 151:204–214. doi: 10.1016/j.geoderma.2009.04.020 CrossRefGoogle Scholar
  48. Gauthier D, Navarro I, Rinaudo G, Jourand P, Jaffré T, Prin Y (1999) Isolation, characterisation (PCR-RFLP) and specificity of Frankia from eight Gymnostoma species endemic to New Caledonia. Eur J Soil Biol 35:199–205CrossRefGoogle Scholar
  49. Gonin M, Gensous S, Lagrange A, Ducousso M, Amir H, Jourand P (2013) Rhizosphere bacteria of Costularia spp. from ultramafic soils in New Caledonia: diversity, tolerance to extreme edaphic conditions, and role in plant growth and mineral nutrition. Can J Microbiol 59:164–174PubMedCrossRefGoogle Scholar
  50. Grandcolas P, Murienne J, Robillard T, Desutter-Grandcolas L, Jourdan H, Guilbert E, Deharveng L (2008) New Caledonia: a very old Darwinian island? Philos Trans R Soc Lond Ser B Biol Sci 363:3309–3317CrossRefGoogle Scholar
  51. Guentas L, Gensous S, Cavaloc Y, Ducousso M, Amir H, De Georges de Ledenon B, Moulin L, Jourand P (2016) Burkholderia novacaledonica sp. nov. and B. ultramafica sp. nov. isolated from roots of Costularia spp. pioneer plants of ultramafic soils in New Caledonia. Syst Appl Microbiol 39:151–159. doi: 10.1016/j.syapm.2016.03.008 PubMedCrossRefGoogle Scholar
  52. Harrison S (1997) How natural habitat pathchiness affects the distribution of diversity in California sperpentine chaparral. Ecology 78:1898–1906CrossRefGoogle Scholar
  53. Harrison S, Inouye BD (2002) High beta diversity in the flora of Californian serpentine ‘islands’. Biodivers Conserv 11:1869–1876CrossRefGoogle Scholar
  54. Harter DEV, Irl SDH, Seo B, Steinbauer MJ, Gillespie R, Triantis KA, Fernández-Palacios J-M, Beierkuhnlein C (2015) Impacts of global climate change on the floras of oceanic islands—projections, implications and current knowledge. Perspect Plant Ecol Evol Syst. doi: 10.1016/j.ppees.2015.01.003 Google Scholar
  55. Hequet V, Le Corre M (2010) Révision du catalogue des plantes introduites de H.S. MacKee (1994). IRD, NouméaGoogle Scholar
  56. Hery M, Nazaret S, Jaffré T, Normand P, Navarro E (2003) Adaptation to nickel spiking of bacterial communities in Neo-caledonian soils. Environ Microbiol 5:3–12PubMedCrossRefGoogle Scholar
  57. Honnay O, Jacquemyn H (2006) Susceptibility of common and rare plant species to the genetic consequences of habitat fragmentation. Conserv Biol 21:823–831CrossRefGoogle Scholar
  58. Hopper SD, Gioia P (2004) The Southwest Australian Floristic Region: evolution and conservation of a global hot spot of biodiversity. Annu Rev Ecol Evol Syst 35:623–650. doi: 10.1146/annurev.ecolsys.35.112202.130201 CrossRefGoogle Scholar
  59. Ibanez T, Hély C, Gaucherel C (2013) Sharp transitions in microclimatic conditions between savanna and forest in New Caledonia: insights into the vulnerability of forest edges to fire. Austral Ecol 38:680–687. doi: 10.1111/aec.12015 CrossRefGoogle Scholar
  60. Ibanez T, Munzinger J, Dagostini G, Hequet V, Rigault F, Jaffré T, Birnbaum P (2014) Structural and floristic characteristics of mixed rainforest in New Caledonia: new data from the New Caledonian Plant Inventory and Permanent Plot Network (NC-PIPPN). Appl Veg Sci 17:386–397. doi: 10.1111/avsc.12070 CrossRefGoogle Scholar
  61. Iturralde RB (2001) The influence of ultramafic soils on plants in Cuba. S Afr J Sci 97Google Scholar
  62. Jaffré T (1977a) Composition chimique élémentaire des tissus foliaires des espèces végétales colonisatrices des anciennes mines de nickel en Nouvelle-Calédonie. Cah ORSTOM, sér Biol XII, pp 323–330Google Scholar
  63. Jaffré T (1977b) Accumulation du manganèse par des espèces associées aux terrains ultrabasiques de Nouvelle-Calédonie. C R Acad Sci Paris (D) 284:1573–1575Google Scholar
  64. Jaffré T (1979) Accumulation du manganèse par les Protéacées de Nouvelle-Calédonie. C R Acad Sci Paris (D) 289:25–428Google Scholar
  65. Jaffré T (1980) Etude écologique du peuplement végétal des sols dérivés de roches ultrabasiques en Nouvelle-Calédonie. Travaux et Document n°124, ORMSTOM, Paris. Available at:
  66. Jaffré T (1992) Floristic and ecological diversity of the vegetation on ultramafic rocks in New Caledonia. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (Serpentine) soils. Intercept Ltd, AndoverGoogle Scholar
  67. Jaffré T (1993) Relation between ecological diversity and floristic diversity in New Caledonia. Biodivers Lett 1:82–91CrossRefGoogle Scholar
  68. Jaffré T (1995) Distribution and Ecology of the Conifers of New Caledonia. In: Enright NJ, Hill RS (eds) Conifers of the Southern Hemisphere. Melbourne University Press, AustraliaGoogle Scholar
  69. Jaffré T, L’Huillier L (2010) La végétation des roches ultramafiques ou terrains miniers. In: L’Huillier L, Jaffré T, Wulff A (eds) Mines et Environnement en Nouvelle-Calédonie : Les milieux sur substrats ultramafiques et leur restauration. Editions IAC, NouméaGoogle Scholar
  70. Jaffré T, Latham M (1974) Contribution à l’étude des relations sol-végétation sur un massif de roches ultrabasiques de la côte Ouest de la Nouvelle-Calédonie : le Boulinda. Adansonia 14:311–336Google Scholar
  71. Jaffré T, Schmid M (1974) Accumulation du nickel par une Rubiaceae de Nouvelle-Calédonie, Psychotria douarrei (G. Beauvisage) Däniker. C R Acad Sci Paris (D) 278:1727–1730Google Scholar
  72. Jaffré T, Veillon JM (1991) Etude floristique et structurale de deux forêts denses humides sur roches ultrabasiques en Nouvelle-Calédonie. Bull Mus Natl Hist Nat B Adansonia 4è(sér 12):243–273Google Scholar
  73. Jaffré T, Veillon JM (1995) Structural and floristic characteristics of a rain forest on schist in New Caledonia: a comparison with an ultramafic rain forest. Bull Mus Natl Hist Nat B Adansonia 4è(sér 17):201–226Google Scholar
  74. Jaffré T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata, a hyperaccumulator of nickel from New Caledonia. Science 193:579–580PubMedCrossRefGoogle Scholar
  75. Jaffré T, Morat P, Veillon JM, MacKee HS (1987) Changements dans la végétation de la Nouvelle-Calédonie au cours du tertiaire : la végétation et la flore des roches ultrabasiques. Bull Mus Natl Hist Nat B Adansonia 4è(sér 9):365–391Google Scholar
  76. Jaffré T, Gauthier D, Rigault F, McCoy SG (1994) Les Casuarinacées endémiques: Caractéristiques écologiques et nutritionnelles. Bois For Trop 242:31–43Google Scholar
  77. Jaffré T, Bouchet P, Veillon JM (1998a) Threatened plants of New Caledonia: is the system of protected areas adequate? Biodivers Conserv 7:107–135Google Scholar
  78. Jaffré T, Rigault F, Dagostini G (1998b) Impact des feux de brousse sur les maquis ligno-herbacés des roches ultramafiques de Nouvelle-Calédonie. Adansonia sér 3(20):173–189Google Scholar
  79. Jaffré T, Rigault F, Dagostini G, Fambart-Tinel J, Wulff A, Munzinger J (2009) Input of the different vegetation units to the richness and endemicity of the New Caledonian flora. In: Mery P (ed) Proceedings of the 11th Pacific Science Inter-Congress, Tahiti, French Polynesia, 2–6 March, 2009. Honolulu HI : Pacific Science Association, Tahiti.
  80. Jaffré T, Munzinger J, Lowry PP II (2010) Threats to the conifer species found on New Caledonia’s ultramafic massifs and proposals for urgently needed measures to improve their protection. Biodivers Conserv 19:1485–1502. doi: 10.1007/s10531-010-9780-6 CrossRefGoogle Scholar
  81. Jaffré T, Rigault F, Munzinger J (2012) La végétation. In: Bonvallot J, Gay J-C, Habert E (eds) Atlas de la Nouvelle-Calédonie. IRD-Congrès de la Nouvelle-Calédonie, Marseille-NouméaGoogle Scholar
  82. Jaffré T, Pillon Y, Thomine S, Merlot S (2013) The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants. Front Plant Sci 4:279PubMedPubMedCentralCrossRefGoogle Scholar
  83. Jordan GJ, Dillon RA, Weston PH (2005) Solar radiation as a factor in the evolution of scleromorphic leaf anatomy in Proteaceae. Am J Bot 92:789–796PubMedCrossRefGoogle Scholar
  84. Jourand P, Ducousso M, Reid R, Majorel C, Richert C, Riss J, Lebrun M (2010) Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of a host plant at toxic nickel concentrations. Tree Physiol 30:1311–1319PubMedCrossRefGoogle Scholar
  85. Jourand P, Hannibal L, Majorel C, Mengant S, Ducousso M, Lebrun M (2014) Ectomycorrhizal Pisolithus albus inoculation of Acacia spirorbis and Encalyptus globulus grown in ultramafic topsoil enhance plant growth and mineral nutrition while limits metal uptake. J Plant Physiol 171:164–172PubMedCrossRefGoogle Scholar
  86. Kay KM, Ward KL, Watt LR, Schemske DWS (2011) Plant speciation. In: Harrison S, Rajakaruma N (eds) Serpentine: the evolution and ecology of a model system. University of California Press, Los AngelesGoogle Scholar
  87. Kazakou E, Dimitrakopulos PG, Baker AJM, Reeves RD, Trombis AY (2008) Hypotheses, mechanisms and trade-off of tolerance and adaptation to serpentine soils: from species ecosystems to ecosystems level. Biol Rev 83:495–508PubMedGoogle Scholar
  88. Kettle CJ, Hollingsworth PM, Jaffré T, Moran B, Ennos RA (2007) Identifying the early genetic consequences of habitat degradation in a highly threatened tropical conifer, Araucaria nemorosa Laubenfels. Mol Ecol 16:3581–3591PubMedCrossRefGoogle Scholar
  89. Kruckeberg AR (1954) The ecology of serpentine soils: III Pant species in relation to serpentine soils. Ecology 35:267–274Google Scholar
  90. Kruckeberg AR (1984) California serpentine: flora, vegetation, geology, soils and management problems. University of California Press, BerkeleyGoogle Scholar
  91. Kruckeberg AR (1991) An essay: geoedaphics and island biogeography for vascular plants. Aliso 13:225–238Google Scholar
  92. Kruckeberg AR (2002) Geology and plant life: the effects of landforms and rock type on plants. University of Washington Press, SeattleGoogle Scholar
  93. L’Huillier L (1994) Biodisponibilité du nickel dans les sols ferrallitiques de Nouvelle-Calédonie. Effets sur le développement et la physiologie du maïs. University of Montpellier II, FranceGoogle Scholar
  94. L’Huillier L, Edighoffer S (1996) Extractability of nickel and its concentration in cultivated plants in Ni rich ultramafic soils of New Caledonia. Plant Soil 186:255–264CrossRefGoogle Scholar
  95. L’Huillier L, Jaffré T, Wulff A (2010) Mines et Environnement en Nouvelle-Calédonie : Les milieux sur substrats ultramafiques et leur restauration. Editions IAC, NouméaGoogle Scholar
  96. Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103PubMedCrossRefGoogle Scholar
  97. Lambers H, Shane MW, Laliberté E, Swarts N, Teste F, Zemunik G (2014) Plant mineral nutration. In: H Lambers (ed) Plant Life on the Sandplains in Southwest Australia, a global biodiversity hotspot—Kwongan matters. University of Western Australia PressGoogle Scholar
  98. Lambers H, Hayes PE, Laliberte E, Oliveira RS, Turner BL (2015) Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends Plant Sci 20:83–90. doi: 10.1016/j.tplants.2014.10.007 PubMedCrossRefGoogle Scholar
  99. Lamont BB, Groom PK, Cowling RM (2002) High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorus and nitrogen concentrations. Funct Ecol 16:403–412CrossRefGoogle Scholar
  100. Latham M (1975) Les sols d’un massif de roches ultrabasiques de la Côte ouest de Nouvelle-Calédonie. Le Boulinda. Cahiers ORSTOM, sér Pedol XIII, pp 159–172Google Scholar
  101. Latham M (1981) Aptitude culturales et forestières des sols. Planche 28. Atlas de la Nouvelle-Calédonie. ORSTOM, ParisGoogle Scholar
  102. Latham M, Quantin C, Aubert G (1978) Etude des sols de la Nouvelle-Calédonie. Notice explicative no 78 ORSTOM, Paris, FranceGoogle Scholar
  103. Lee WG (1992) New Zealand ultramafics. In: Robert BA, Proctor J (eds) The ecology of areas with serpentinized rocks a world view. Kluwer Academic Press, DordrechtGoogle Scholar
  104. Losfeld G, L’Huillier L, Fogliani B, McCoy SG, Grison C, Jaffré T (2015) Leaf-age and soil-plant relationships: key factors for reporting trace-elements hyperaccumulation by plants and design applications. Environ Sci Pollut Res 22:5620–5632CrossRefGoogle Scholar
  105. Lowry II PP (1998) Diversity, endemism, and extinction in the flora of New Caledonia: a review. In: Peng C-I, Lowry II PP (eds) Rare, threatened, and endangered floras of Asia and the Pacific. Institute of Botany, Academica Sinica, Monogr. Ser. No. 16, TaipeiGoogle Scholar
  106. McCoy SG, Jaffré T, Rigault F, Ash JE (1999) Fire and succession in the ultramafic maquis of New Caledonia. J Biogeogr 26:579–594CrossRefGoogle Scholar
  107. Mengoni A, Baker AJM, Bazzicalupo M, Reeves RD, Adigüzel N, Chianni E, Galardi F, Gabbrielli R, Gonnelli C (2003) Evolutionary dynamics of nickel hyperaccumulation in Alyssum revealed by ITS nrDNA analysis. New Phytol 159:691–699CrossRefGoogle Scholar
  108. Merlot S, Hannibal L, Martin S, Martinelli L, Amir H, Lebrun M, Thomine S (2014) The metal transporter PgIREG1 from the hyperaccumulator Psychotria gabriellae is a candidate gene for nickel tolerance and accumulation. J Exp Bot 65:1551–1564PubMedCrossRefGoogle Scholar
  109. Meyer J-Y, Loope LL, Sheppard A, Munzinger J, Jaffré T (2006) Les plantes envahissantes et potentiellement envahissantes dans l'archipel néo-calédonien : première évaluation et recommandations de gestion. In: Beauvais M-L, Coléno A, Jourdan H (eds) Les espèces envahissantes dans l'archipel néo-calédonien. Expertise collégiale : IRD, ParisGoogle Scholar
  110. Morat P (1993) The terrestrial biota of New Caledonia. Biodivers Lett 1:69–71CrossRefGoogle Scholar
  111. Morat P, Jaffré T, Veillon JM, MacKee HS (1986) Affinités floristiques et considérations sur l'origine des maquis miniers de la Nouvelle-Calédonie. Bull Mus Natl Hist Nat B Adansonia 4è(sér 8):133–182Google Scholar
  112. Morat P, Jaffré T, Veillon JM (1994) Richesse et affinités floristiques de la Nouvelle-Calédonie : conséquence directe de son histoire géologique. Mém Soc Biogéogr 4:111–123Google Scholar
  113. Morat P, Jaffré T, Veillon JM (2001) The flora of New Caledonia's calcareous substrates. Adansonia sér 3(23):109–127Google Scholar
  114. Morat P, Jaffré T, Tronchet F, Munzinger J, Pillon Y, Veillon JM, Chalopin M (2012) Le référentiel taxonomique Florical et les caractéristiques de la flore vasculaire indigène de la Nouvelle-Calédonie. Adansonia sér 3(34):177–219. doi: 10.5252/a2012n2a1 Google Scholar
  115. Mouly A, Jeanson M (2015) Specialization to ultramafic substrates and narrow endemism of Cyclophyllum (Rubiaceae) in New Caledonia: contribution of novel species to the understanding of these singular patterns. Acta Bot Gallica 162:173–189. doi: 10.1080/12538078.2015.1062799 CrossRefGoogle Scholar
  116. Murienne J (2009) New Caledonia: biology. In: Gillespie R, Clague D (eds) Encyclopedia of islands. University of California Press, BerkeleyGoogle Scholar
  117. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858PubMedCrossRefGoogle Scholar
  118. Nasi R, Jaffré T, Sarrailh JM (2002) Les forêts de montagnes de Nouvelle-Calédonie. Bois For Trop 274:5–17Google Scholar
  119. Navarro I, Jaffré T, Gauthier D, Gourbiere F, Rinaudo G, Simonet P (1999) Distribution of Gymnostoma spp. microsymbiotic Frankia strains in New Caledonia is related to soil type and host-plant species. Mol Ecol 8:1781–1788PubMedCrossRefGoogle Scholar
  120. O’Dell RE, Rajakaruna N (2011) Intraspecific variation, adaptation, and evolution. In: Harrison SP, Rajakaruna N (eds) Serpentine: the evolution and ecology of a model system. Univ. of California Press, BerkeleyGoogle Scholar
  121. Pelletier B (2006) Geology of the New Caledonia region and its implications for the study of the New Caledonian biodiversity. In: Payri C, Richer de Forges B (eds) Compendium of marines species from New Caledonia. Doc. Sci. Tech. IRD, II 7, NouméaGoogle Scholar
  122. Perrier N, Colin F, Jaffré T, Ambroisi JR, Ballero JP (2004) Nickel speciation in Sebertia acuminata, a plant growing on a laterite soil in New Caledonia. C R Geosci 333:567–577CrossRefGoogle Scholar
  123. Perrier N, Amir H, Colin F (2006) Occurrence of mycorrhizal symbioses in the metal-rich lateritic soils of the Koniambo Massif New Caledonia. Mycorrhiza 16:449–458PubMedCrossRefGoogle Scholar
  124. Perry GLW, Enright NJ (2002) Spatial modelling of landscape composition and pattern in a maquis-forest complex, Mont Do, New Caledonia. Ecol Model 152:279–302CrossRefGoogle Scholar
  125. Pillon Y (2012) Time and tempo of diversification in the flora of New Caledonia. Bot J Linn Soc 170:288–298. doi: 10.1111/j.1095-8339.2012.01274.x CrossRefGoogle Scholar
  126. Pillon Y, Hopkins HC, Bradford J (2008) Two new species of Cunonia (Cunoniaceae) from New Caledonia. Kew Bull 63:419–431CrossRefGoogle Scholar
  127. Pillon Y, Munzinger J, Amir H, Hopkins HC, Chase MW (2009) Reticulate evolution on a mosaic of soils: diversification of the New Caledonian endemic genus Codia (Cunoniaceae). Mol Ecol 18:2263–2275PubMedCrossRefGoogle Scholar
  128. Pillon Y, Munzinger J, Amir H, Lebrun M (2010) Ultramafic soils and species sorting in the flora of New Caledonia. J Ecol 98:1108–1116. doi: 10.1111/j.1365-2745.2010.01689.x CrossRefGoogle Scholar
  129. Pillon Y, Hopkins HCF, Rigault F, Jaffré T, Stacy EA (2014) Cryptic adaptive radiation in tropical forest trees in New Caledonia. New Phytol 202:521–530. doi: 10.1111/nph.12677 PubMedCrossRefGoogle Scholar
  130. Pintaud JC, Jaffré T (2001) Pattern of diversification of Palms on ultramafic rocks in New Caledonia. S Afr J Sci 97:548–550Google Scholar
  131. Pintaud J-C, Jaffré T, Puig H (2001) Chorology of New Caledonian palms and possible evidence of Pleistocene rain forest refugia. C R Acad Sci III- Vie 324:453–463CrossRefGoogle Scholar
  132. Pouteau R, Trueba S, Feild TS, Isnard S (2015) New Caledonia: a Pleistocene refugium for rainforest lineages of relict angiosperms. J Biogeogr 42:2062–2077CrossRefGoogle Scholar
  133. Proctor J (2003) Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspect Plant Ecol Evol Syst 6:105–124CrossRefGoogle Scholar
  134. Rajakaruma N, Boyd RS (2008) The edaphic factor. Encyclopedia of ecology. ElsevierGoogle Scholar
  135. Rajakaruna N (2004) The edaphic factor in the origin of plant species. Int Geol Rev 46:471–478CrossRefGoogle Scholar
  136. Rajakaruna N, Baker AJM (2004) Serpentine: a model habitat for botanical research in Sri Lanka. Cey J Sci (Biol Sci) 32:1–19Google Scholar
  137. Read J, Jaffré T, Hope GS, Godrie E, Veillon JM (2000) Structural and floristic characteristics of some monodominant and adjacent mixed rainforests in New Caledonia. J Biogeogr 27:233–250CrossRefGoogle Scholar
  138. Read J, Ferris JM, Jaffré T (2002) The foliar mineral content of Nothofagus species on ultramafic soils in New Caledonia and non-ultramafic soils in Papua New Guinea. Aust J Bot 50:607–617CrossRefGoogle Scholar
  139. Read J, Jaffré T, Ferris JM, McCoy SG, Hope GS (2006a) Does soil determine the boundaries of monodominant rain forest with adjacent mixed rain forest and maquis on ultramafic soils in New Caledonia? J Biogeogr 33:1055–1065CrossRefGoogle Scholar
  140. Read J, Sanson G, de Garine-Wichatitsky M, Jaffré T (2006b) Sclerophylly in two contrasting tropical environments : low nutrients vs low rainfall. Am J Bot 93:1601–1614PubMedCrossRefGoogle Scholar
  141. Read J, Lamont BB, Sanson G, de Garine-Wichatitsky M, Jaffré T (2007) Is sclerophylly the same phenomenon in shrublands in contrasting environments? Kwongan in Western Australia and maquis in New Caledonia. In: Rokich D, Wardell-Johnson G, Yates C, Stevens J, Dixon K, McLellan R, Moss G (eds) MEDECOS XI 2007 Conference, Kings Park and Botanic Garden, Perth, AustraliaGoogle Scholar
  142. Read J, Sanson G, Burd M, Jaffré T (2008) Mass flowering and parental death in the regeneration of Cerberiopis candelabra (Apocynaceae), a long-lived monocarpic tree in New Caledonia. Am J Bot 95:558–567PubMedCrossRefGoogle Scholar
  143. Reddell P, Bowen GD, Robson AD (1986) Nodulation of Casuarinaceae in relation to host species and soil properties. Aust J Bot 34:435–444CrossRefGoogle Scholar
  144. Reeves RD, Baker AJM, Borhidi A, Berazain R (1996) Nickel accumulating plants from the ancient serpentine soils of Cuba. New Phytol 133:217–224CrossRefGoogle Scholar
  145. Reeves RD, Baker AJM, Borhidi A, Berazain R (1999) Nickel hyperaccumulation in the serpentine flora of Cuba. Ann Bot 83:29–38CrossRefGoogle Scholar
  146. Richardson JE, Weitz FM, Fay MF, Cronk QCB, Linder HP, Reeves G, Chase MW (2001) Rapid and recent origin of species richness in the Cape flora of South Africa. Nature 412:181–183PubMedCrossRefGoogle Scholar
  147. Rigg L, Enright NJ, Jaffré T, Perry GLW (2010) Contrasting population dynamics of the endemic New Caledonian conifer, Araucaria laubenfelsii, in maquis and rainforest. Biotropica 42:479–487CrossRefGoogle Scholar
  148. Safford HD, Viers JH, Harrison SP (2005) Serpentine endemism in the California flora: a database of serpentine affinity. Madrono 52(4):22–257CrossRefGoogle Scholar
  149. Schmid M (1981) Fleurs et plantes de Nouvelle-Calédonie. Editions du Pacifique, NouméaGoogle Scholar
  150. Schmid M (1982) Endémisme et spéciation en Nouvelle-Calédonie. C R Soc Biogéogr 58:52–60Google Scholar
  151. Schnitzler J, Barraclough TG, Boatwright JS, Goldblatt P, Manning JC, Powell MP, Rebelo T, Savolainen V (2011) Causes of plant diversification in the Cape biodiversity hotspot of South Africa. Syst Biol 60:343–357. doi: 10.1093/sysbio/syr006 PubMedCrossRefGoogle Scholar
  152. Shane MW, Cawthray GR, Cramer MD, Kuo J, Lambers H (2006) Specialized ‘dauciform’ roots of Cyperaceae are structurally distinct, but functionally analogous with ‘cluster’roots. Plant Cell Environ 29:1989–1999PubMedCrossRefGoogle Scholar
  153. Smith SE, Read J (2008) Mycorrhizal symbiosis. ElsevierGoogle Scholar
  154. Stevanović V, Kit T, Iatrou G (2003) Distribution of the endemic Balkan flora on serpentine I. Obligate serpentine endemics. Plant Syst Evol 242:149–170CrossRefGoogle Scholar
  155. Swenson U, Lowry PP II, Munzinger J, Rydin C, Bartish IV (2008) Phylogeny and generic limits in the Niemeyera complex of New Caledonian Sapotaceae: evidence of multiple origins of the anisomerous flower. Mol Phylogenet Evol 49:909–929. doi: 10.1016/j.ympev.2008.09.022 PubMedCrossRefGoogle Scholar
  156. Taylor S, Kumar L (2016) Global climate change impacts on pacific islands terrestrial biodiversity: a review. Trop Conserv Sci 9:203–223Google Scholar
  157. Thorne RF (1965) Floristic relationships of New Caledonia. Stud Nat Hist Iowa Univ 20:1–14Google Scholar
  158. Trescases JJ (1975) L'évolution geochimique supergène des roches ultrabasiques en zone tropicale. Formation des gisements nickèlifères de Nouvelle-Calédonie. Mémoire ORSTOM, pp 1–284Google Scholar
  159. van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334CrossRefGoogle Scholar
  160. van der Ent A, Repin R, Sugau J, Wong KM (2014) The ultramafic flora of Sabah. An introduction to the plant diversity on ultramafic soils. Natural History Publication, BorneoGoogle Scholar
  161. van der Ent A, Jaffré T, L’Huillier L, Gibson N, Reeves RD (2015a) The flora of ultramafic soils in the Australia–Pacific Region: state of knowledge and research priorities. Aust J Bot 63:173–190. doi: 10.1071/BT15038 CrossRefGoogle Scholar
  162. van der Ent A, Repin R, Sugau J, Wong KM (2015b) Plant diversity and ecology of ultramafic outcrops in Sabah (Malaysia). Aust J Bot 63:204–215. doi: 10.1071/BT14214 CrossRefGoogle Scholar
  163. van der Ent A, Echevarria G, Tibbett M (2016) Delimiting soil chemistry thresholds for nickel hyperaccumulator plants in Sabah (Malaysia). Chemoecology 26:67–82. doi: 10.1007/s00049-016-0209-x CrossRefGoogle Scholar
  164. Virot R (1956) La végétation canaque. Mém Mus Natl Hist Nat Ser B Bot 7:1–400Google Scholar
  165. Walker RB (1954) The ecology of serpentine soils. II Factor affecting plant growth on serpentine soils. Ecology 35:259–266Google Scholar
  166. Whittaker RH (1954) The ecology of serpentine soils. IV The vegetation response to serpentine soils. Ecology 35:275–288CrossRefGoogle Scholar
  167. Wulff A, L’Huillier L, Véa C, Jaffré T (2010) Espèces indigènes utilisables en revégétalisation. In: L’Huillier L, Jaffré T, Wulff A (eds) Mines et Environnement en Nouvelle-Calédonie : Les milieux sur substrats ultramafiques et leur restauration. IAC, NouméaGoogle Scholar
  168. Wulff AS, Hollingsworth PM, Ahrends A, Jaffré T, Veillon JM, L’Huillier L, Fogliani B (2013) Conservation priorities in a biodiversity hotspot: analysis of narrow endemic plant species in New Caledonia. Plos One 8, e73371. doi: 10.1371/journal.pone.0073371 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sandrine Isnard
    • 1
  • Laurent L’huillier
    • 2
  • Frédéric Rigault
    • 3
  • Tanguy Jaffré
    • 1
  1. 1.IRD, UMR AMAP, Laboratoire de Botanique et d’Ecologie Végétale Appliquées, Herbarium NOUNoumeaNew Caledonia
  2. 2.Institut Agronomique Néo-Calédonien (IAC), Diversités Biologique et Fonctionnelle des Ecosystèmes TerrestresPaïtaNew Caledonia
  3. 3.Institut Méditerranéen de Biodiversité et d’Ecologie Marine et Continentale (IMBE), Aix-Marseille Université, UMR CNRS - IRD – UAPV, UMR 237 IRD, Centre IRD NouméaNouméa CedexNouvelle-Calédonie

Personalised recommendations