Advertisement

Plant and Soil

, Volume 406, Issue 1–2, pp 157–172 | Cite as

Impact of potassium fertilization and potassium uptake by plants on soil clay mineral assemblage in South Brazil

  • Diovane Freire Moterle
  • João Kaminski
  • Danilo dos Santos Rheinheimer
  • Laurent Caner
  • Edson Campanhola Bortoluzzi
Regular Article

Abstract

Aims

Potassium (K) fertilization increases crop productivity, but in some cases, crop productivity is maintained even with inadequate or low K input. In both situations, the soil mineralogy plays a role that should be investigated. The aims of this study were to quantify the potassium concentrations in several soil compartments, determine the amount of K taken up by plants, and consider soil clay mineralogical changes and K dynamics, as response to K fertilization historic and successive crops.

Methods

A soil field experiment was conducted in south Brazil over a period of 15 years with different K doses, and a second experiment was conducted in a greenhouse with 11 successive plant cycles under two conditions: no K fertilization (K-poor context) and K fertilization of 30 and 90 mg kg−1 of soil (K-rich context).

Results

In the K-poor context, illite was not found in clay fraction and the non-exchangeable K and available K forms were reduced, compromising both the K uptake by plants and the crop yield. In the K-rich context, the low amount of illite was found compared to K-poor context, while relative hydroxy-aluminum interlayered vermiculite (HIV) abundance decreased in detriment of kaolinite. Furthermore, all K compartments (K in plants, available K, structural K, and non-exchangeable K) were restored when high fertilization was applied to the soil.

Conclusion

For correct fertilization, the soil mineralogy and fertilization background should be taken into account to obtain high crop production and low K loss in agricultural lands. This will help to maintain soil K reserve, but the successive crops induce ion exhaustion, including K, affecting whole clay mineral assemblage.

Keywords

Illite–vermiculite interstratified 2:1 clay minerals K uptake X-ray diffraction Chemical gradient Crop yield 

Notes

Acknowledgments

We thank the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), the National Research and Innovation Council (CNPq/Brasilia-Brazil) for financial support and for a research fellowship granted to the authors E. C. Bortoluzzi, J. Kaminski, and D.R. dos Santos, and the CAPES-COFECUB under project Te 761-12 / 3504-11-5. The authors also thank Ph.D. Bruce Velde and the anonymous reviewers for help with some valuable comments.

References

  1. Adamo P, Barré P, Cozzolino V, Di Meo V, Velde B (2016) Short term clay mineral release and re-capture of potassium in a Zea mays field experiment. Geoderma 264:54–60. doi: 10.1016/j.geoderma.2015.10.005 CrossRefGoogle Scholar
  2. Barnhisel RJ, Bertsch PM (1989) Chlorites and hydroxy-interlayed vermiculite and smectite. In: Dixon JB, Weed SB (eds) Minerals in soil environments, 2nd edn. Soil Science Society of America. Madison, Wisconsin, pp 729–788Google Scholar
  3. Barré P, Montagnier C, Chenu C, Abbadie L, Velde B (2008a) Clay minerals as a soil potassium reservoir: observation and quantification through X-ray diffraction. Plant Soil 302:213–220. doi: 10.1007/s11104-007-9471-6 CrossRefGoogle Scholar
  4. Barré P, Velde B, Fontaine C, Catel N, Abbadie L (2008b) Which 2:1 clay minerals are involved in the soil potassium reservoir? Insights from potassium addition or removal experiments on three temperate grassland soil clay assemblages. Geoderma 146:216–223. doi: 10.1016/j.geoderma.2008.05.022 CrossRefGoogle Scholar
  5. Bortoluzzi EC, Poleto C (2006) Metodologias para estudos de sedimentos: ênfase na proporção e na natureza mineralógica das partículas. In: Poleto C, Merten GH (eds) Qualidade de sedimentos, 1st edn. ABRH, Porto Alegre, pp 83–140Google Scholar
  6. Bortoluzzi EC, Rheinheimer DS, Kaminski J, Gatiboni LC, Tessier D (2005) Alterações na mineralogia de um argissolo do Rio Grande do sul submetido à fertilização potássica. Rev Bras Cienc Solo 29:327–335. doi: 10.1590/S0100-06832005000300002 CrossRefGoogle Scholar
  7. Bortoluzzi EC, Velde B, Pernes M, Dur JC, Tessier D (2008) Vermiculite, with hydroxy-aluminium interlayer, and kaolinite formation in a subtropical sandy soil from south Brazil. Clay Miner 43:185–193. doi: 10.1180/claymin.2008.043.2.03 CrossRefGoogle Scholar
  8. Bortoluzzi EC, Moterle DF, Rheinheimer DS, Casali CA, Melo GW, Brunetto G (2012) Mineralogical changes caused by grape production in a Regosol from subtropical Brazilian climate. J Soil Sediment 12:854–862. doi: 10.1007/s11368-012-0509-x CrossRefGoogle Scholar
  9. Bortoluzzi EC, Rheinheimer DS, Santanna MA, Caner L (2013) Mineralogy and nutrient desorption of suspended sediments during a storm event. J Soil Sediment 13:1093–1105. doi: 10.1007/s11368-013-0692-4 CrossRefGoogle Scholar
  10. Brindley GW, Brown G (1980) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society, Monograph n°5. Mineralogical Society, LondonGoogle Scholar
  11. Britzke D, da Silva LS, Moterle DF, Rheinheimer DS, Bortoluzzi EC (2012) A study of potassium dynamics and mineralogy in soils from subtropical Brazilian lowlands. J Soil Sediment 12:185–197. doi: 10.1007/s11368-011-0431-7 CrossRefGoogle Scholar
  12. Caner L, Radtke LM, Vignol-Lelarge ML, Inda AV, Bortoluzzi EC, Mexias AS (2014) Basalt and rhyo-dacite weathering and soil clay formation under subtropical climate in southern Brazil. Geoderma 235–236:100–112. doi: 10.1016/j.geoderma.2014.06.024 CrossRefGoogle Scholar
  13. Carey PL, Metherell AK (2003) Rates of release of non-exchangeable potassium in New Zealand soils measured by a modified sodium tetraphenyl-boron method. N Z J Agr Res 46:185–197. doi: 10.1080/00288233.2003.9513546 CrossRefGoogle Scholar
  14. CQFS RS/SC (Comissão de Química e Fertilidade do Solo - RS/SC) (2004) Manual de adubação, 10th edn. Sociedade Brasileira de Ciência do Solo, Porto AlegreGoogle Scholar
  15. Darunsontaya T, Suddhiprakarn A, Kheoruenromne I, Gilkes RJ (2010) The kinetics of potassium release to sodium tetraphenylboron solution from the clay fraction of highly weathered soils. Appl Clay Sci 50:376–385. doi: 10.1016/j.clay.2010.09.001 CrossRefGoogle Scholar
  16. Darunsontaya T, Suddhiprakarn A, Kheoruenromne I, Prakongkep N, Gilkes RJ (2012) The forms and availability to plants of soil potassium as related to mineralogy for upland Oxisols and Ultisols from Thailand. Geoderma 170:11–24. doi: 10.1016/j.geoderma.2011.10.002 CrossRefGoogle Scholar
  17. Gommers A, Thiry Y, Delvaux B (2005) Rhizospheric mobilization and plant uptake of radiocesium from weathered micas. J Environ Qual 34:2167. doi: 10.2134/jeq2004.0406 CrossRefPubMedGoogle Scholar
  18. Hinsinger P, Jaillard B (1993) Root-induced release of interlayer potassium and vermiculitization of phlogopite as related to potassium depletion in the rhizosphere of ryegrass. J Soil Sci 44:525–534. doi: 10.1111/j.1365-2389.1993.tb00474.x CrossRefGoogle Scholar
  19. Hinsinger P, Jaillard B, Dufey JE (1992) Rapid weathering of a trioctahedral mica by the roots of ryegrass. Soil Sci Soc Am J 56:977–982. doi: 10.2136/sssaj1992.03615995005600030049x CrossRefGoogle Scholar
  20. Inda AV, Torrent J, Barrón V, Bayer C (2010) Aluminum hydroxy-interlayered minerals and chemical properties of a subtropical Brazilian Oxisol under no-tillage and conventional tillage. Rev Bras Cienc Solo 34:33–41. doi: 10.1590/S0100-06832010000100004 CrossRefGoogle Scholar
  21. Kaminski J, Brunetto G, Moterle DF, Rheinheimer DS (2007) Depleção de formas de potássio do solo afetada por cultivos sucessivos. Rev Bras Cienc Solo 31:1003–1010. doi: 10.1590/S0100-06832007000500017 CrossRefGoogle Scholar
  22. Lanson B (1997) Decomposition of experimental X-ray diffraction patterns (profile fitting); a convenient way to study clay minerals. Clay Clay Miner 45:132–146. doi: 10.1346/CCMN.1997.0450201 CrossRefGoogle Scholar
  23. Meunier A (2007) Soil hydroxy-interlayered minerals: a re-interpretation of their crystallochemical properties. Clay Clay Miner 55:380–388. doi: 10.1346/CCMN.2007.0550406 CrossRefGoogle Scholar
  24. Mojallali H, Weed SB (1978) Weathering of micas by mycorrhizal soybean plants. Soil Sci Soc Am J 42:367–372. doi: 10.2136/sssaj1978.03615995004200020033x CrossRefGoogle Scholar
  25. Mortland MM, Lawton K, Uehara G (1956) Alteration of biotite to vermiculite by plant growth. Soil Sci 82:477–482CrossRefGoogle Scholar
  26. Nachtigall GR, Vahl LC (1991) Capacidade de suprimento de potassio dos solos da regiao sul do Rio Grande do Sul. Rev Bras Cienc Solo 15:43–47Google Scholar
  27. Öborn I, Edwards AC, Hillier S (2010) Quantifying uptake rate of potassium from soil in a long-term grass rotation experiment. Plant Soil 335:3–19. doi: 10.1007/s11104-010-0429-8 CrossRefGoogle Scholar
  28. Oliveira V, Ludwick AE, Beatty MT (1971) Potassium removed from some southern Brazilian soils by exhaustive cropping and chemical extraction methods. Soil Sci Soc Am J 35:763–767. doi: 10.2136/sssaj1971.03615995003500050037x CrossRefGoogle Scholar
  29. Pal Y, Gilkes R, Wong MTF (2001) Soil factors affecting the availability of potassium to plants for Western Australian soils: a glasshouse study. Aust J Soil Res 39:611–625. doi: 10.1071/SR00030 CrossRefGoogle Scholar
  30. Pernes-Debuyser A, Pernes M, Velde B, Tessier D (2003) Soil mineralogy evolution in the INRA 42 plots experiment (Versailles, France). Clay Clay Miner 51:577–584. doi: 10.1346/000986003322584820 CrossRefGoogle Scholar
  31. Raheb A, Heidari A (2012) Effects of clay mineralogy and physico-chemical properties on potassium availability under soil aquic conditions. J Plant Nutr Soil Sci 12:747–761Google Scholar
  32. Schimitz GW, Pratt PF (1953) Exchangeable and nonexchangeable potassium as indexes to yield increases and potassium absorption by corn in the greenhouse. Soil Sci 76:345–353CrossRefGoogle Scholar
  33. Simonsson M, Andersson S, Andrist-Rangel Y, Hillier S, Mattsson L (2007) Potassium release and fixation as a function of fertilizer application rate and soil parent material. Geoderma 140:188–198. doi: 10.1016/j.geoderma.2007.04.002 CrossRefGoogle Scholar
  34. Tedesco M, Gianello C, Bissani C, Bohnen H, Volkweiss SJ (1995) Análise de solo, plantas e outros materiais, UFRGS, 2nd edn. Porto AlegreGoogle Scholar
  35. Velde B, Peck T (2002) Clay mineral changes in the morrow experimental plots, University of Illinois. Clay Clay Miner 50:364–370. doi: 10.1346/000986002760833738 CrossRefGoogle Scholar
  36. Zysset M, Schindler PW (1996) The proton promoted dissolution kinetics of K-montmorillonite. Geochim Cosmochim Acta 60:921–931CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Diovane Freire Moterle
    • 1
  • João Kaminski
    • 2
  • Danilo dos Santos Rheinheimer
    • 2
  • Laurent Caner
    • 3
  • Edson Campanhola Bortoluzzi
    • 4
  1. 1.Federal Institute of Education, Science and Technology of Rio Grande do SulBento GonçalvesBrazil
  2. 2.Federal University of Santa Maria - UFSMSanta MariaBrazil
  3. 3.Université de PoitiersPoitiersFrance
  4. 4.Laboratory of Land Use and Natural ResourcesUniversity of Passo FundoPasso FundoBrazil

Personalised recommendations