Plant and Soil

, Volume 404, Issue 1–2, pp 385–398 | Cite as

Effect of topography and litterfall input on fine-scale patch consistency of soil chemical properties in a tropical rainforest

  • Shang-Wen Xia
  • Jin Chen
  • Doug Schaefer
  • Uromi Manage Goodale
Regular Article



Spatial aggregation of soil chemical properties, or nutrient patches, may be generated by topography and plants and can seasonally fluctuate because of climate. Whether nutrient patches maintain consistency (no change in ranking through sequential sampling), through temporal scales, and whether topography and litterfall contribute to the persistence of such ranking is rarely tested.


In a 1-ha tropical rainforest plot in Southwest China, we measured soil pH, total N, NH4–N, NO3–N, and available P and K for four times and assessed the patch structure (patterns of patch distribution) and their temporal consistency. We then tested how structure and consistency of chemical soil properties were affected by topography and chemical inputs from litterfall.


All soil chemical properties showed significant seasonal fluctuations, but patch consistency was higher for soil pH, total N, and available P and K compared to NH4–N or NO3–N. Topography influenced pH patch consistency while annual litterfall input was important for maintaining patch consistency in total N and available P and K.


Fine-scale consistency of patches in soil pH, total N, and available P and K suggest they may exert stable selection pressures on species for niche differentiation, while consistency of soil NH4–N and NO3–N require further study.


Litterfall properties Seasonal fluctuation Soil spatial heterogeneity Topography Xishuangbanna 



This study was supported by National Science Foundation of China (31270566 and 41271278). We thank Lang Ma for his assistance in field. We also thank Xiao-Dong Yang, Alice C. Hughes, Hans Lambers, and Mark Bradford for their suggestions and comments. We appreciate the Biogeochemistry Laboratory of the Xishuangbanna Tropical Botanical Garden for nutrients analysis, the Xishuangbanna Station for Tropical Rain Forest Ecosystem Studies, for providing plot elevation data and field assistance.

Supplementary material

11104_2016_2854_MOESM1_ESM.docx (540 kb)
ESM 1 (DOCX 540 kb)


  1. Aerts R (1996) Nutrient resorption from senescing leaves of perennials: are there general patterns? J Ecol 84:597–608. doi: 10.2307/2261481 CrossRefGoogle Scholar
  2. Attiwill PM, Adams MA (1993) Nutrient cycling in forests. New Phytol 124:561–582. doi: 10.1111/j.1469-8137.1993.tb03847.x CrossRefGoogle Scholar
  3. Baldeck CA, Harms KE, Yavitt JB, John R, Turner BL, Valencia R, Navarrete H, Davies SJ, Chuyong GB, Kenfack D, Thomas DW, Madawala S, Gunatilleke N, Gunatilleke S, Bunyavejchewin S, Kiratiprayoon S, Yaacob A, Supardi MNN, Dalling JW (2013) Soil resources and topography shape local tree community structure in tropical forests. Proc R Soc B Biol Sci 280:20122532. doi: 10.1098/rspb.2012.2532 CrossRefGoogle Scholar
  4. Bivand RS, Pebesma E, Gómez-Rubio V (2013) Applied spatial data analysis with R. Springer New York, New YorkCrossRefGoogle Scholar
  5. Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Modell 153:51–68. doi: 10.1016/S0304-3800(01)00501-4 CrossRefGoogle Scholar
  6. Cambardella C, Moorman TB, Parkin TB, Karlen DL, Novak JM, Turco RF, Konopka E (1994) Field-scale variability of soil properties in Central Iowa soils. Soil Sci Soc Am J 58:1501. doi: 10.2136/sssaj1994.03615995005800050033x CrossRefGoogle Scholar
  7. Cao M, Zhu H, Wang H, Lan G-Y, Hu Y-H, Zhou S-S, Deng X-B, Cui J-Y (2008) Xishuangbanna tropical seasonal rainforest dynamics plot: tree distribution maps, diameter tables and species documentation. Yunnan Science and Technology Press, KunmingGoogle Scholar
  8. Cao M, Zou X, Warren M, Zhu H (2006) Tropical forests of Xishuangbanna, China. Biotropica 38:306–309. doi: 10.1111/j.1744-7429.2006.00146.x CrossRefGoogle Scholar
  9. Chang S-C, Wang C-P, Feng C-M, Rees R, Hell U, Matzner E (2007) Soil fluxes of mineral elements and dissolved organic matter following manipulation of leaf litter input in a Taiwan Chamaecyparis forest. For Ecol Manage 242:133–141. doi: 10.1016/j.foreco.2007.01.025 CrossRefGoogle Scholar
  10. Chapin FS, Matson PA, Vitousek PM (2012) Principles of terrestrial ecosystem ecology. Springer, New YorkGoogle Scholar
  11. Chave J, Navarrete D, Almeida S, Álvarez E, Aragão LEOC, Bonal D, Châtelet P, Silva-Espejo JE, Goret J-Y, von Hildebrand P, Jiménez E, Patiño S, Peñuela MC, Phillips OL, Stevenson P, Malhi Y (2010) Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences 7:43–55. doi: 10.5194/bg-7-43-2010 CrossRefGoogle Scholar
  12. Chen Z, Hsieh C, Jiang FF, Hsieh T-H, Sun I (1997) Relations of soil properties to topography and vegetation in a subtropical rain forest in southern Taiwan. Plant Ecol 132:229–241. doi: 10.1023/A:1009762704553 CrossRefGoogle Scholar
  13. Comita LS, Engelbrecht BMJ (2009) Seasonal and spatial variation in water availability drive habitat associations in a tropical forest. Ecology 90:2755–2765. doi: 10.1890/08-1482.1 CrossRefPubMedGoogle Scholar
  14. Cuevas E, Lugo AEE (1998) Dynamics of organic matter and nutrient return from litterfall in stands of ten tropical tree plantation species. For Ecol Manage 112:263–279. doi: 10.1016/S0378-1127(98)00410-1 CrossRefGoogle Scholar
  15. Dent DH, Bagchi R, Robinson D, Majalap-Lee N, Burslem DFRP (2006) Nutrient fluxes via litterfall and leaf litter decomposition vary across a gradient of soil nutrient supply in a lowland tropical rain forest. Plant Soil 288:197–215. doi: 10.1007/s11104-006-9108-1 CrossRefGoogle Scholar
  16. Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedback in the plant-soil system. Annu Rev Environ Resour 30:75–115. doi: 10.1146/ CrossRefGoogle Scholar
  17. Ettema CH, Wardle DA (2002) Spatial soil ecology. Trends Ecol Evol 17:177–183. doi: 10.1016/S0169-5347(02)02496-5 CrossRefGoogle Scholar
  18. Facelli J, Pickett S (1991) Plant litter: its dynamics and effects on plant community structure. Bot Rev 57:1–32. doi: 10.1007/BF02858763 CrossRefGoogle Scholar
  19. Ferrari J (1999) Fine-scale patterns of leaf litterfall and nitrogen cycling in an old-growth forest. Can J For Res 302:291–302CrossRefGoogle Scholar
  20. Gallardo A (2003) Spatial variability of soil properties in a floodplain forest in Northwest Spain. Ecosystems 6:564–576. doi: 10.1007/s10021-003-0198-9 CrossRefGoogle Scholar
  21. Gallardo A, Paramá R (2007) Spatial variability of soil elements in two plant communities of NW Spain. Geoderma 139:199–208. doi: 10.1016/j.geoderma.2007.01.022 CrossRefGoogle Scholar
  22. Gallardo A, Paramá R, Covelo F (2005) Soil ammonium vs. nitrate spatial pattern in six plant communities: simulated effect on plant populations. Plant Soil 277:207–219. doi: 10.1007/s11104-005-7013-7 CrossRefGoogle Scholar
  23. Gonzalez OJ, Zak DR (1994) Geostatistical analysis of soil properties in a secondary tropical dry forest, St. Lucia, West Indies. Plant Soil 163:45–54. doi: 10.1007/BF00033939 Google Scholar
  24. Guo D, Mou P, Jones RH, Mitchell RJ (2004) Spatio-temporal patterns of soil available nutrients following experimental disturbance in a pine forest. Oecologia 138:613–621. doi: 10.1007/s00442-003-1473-3 CrossRefPubMedGoogle Scholar
  25. Heuvelink GB, Webster R (2001) Modelling soil variation: past, present, and future. Geoderma 100:269–301. doi: 10.1016/S0016-7061(01)00025-8 CrossRefGoogle Scholar
  26. Hijmans RJ (2014) Raster: geographic data analysis and modeling R package version 2.2-31.
  27. Holmgren M, Scheffer M, Ezcurra E, Gutiérrez JR, Mohren GMJ (2001) El Niño effects on the dynamics of terrestrial ecosystems. Trends Ecol Evol 16:89–94CrossRefPubMedGoogle Scholar
  28. Hruska J, Cermák J, Sustek S (1999) Mapping tree root systems with ground-penetrating radar. Tree Physiol 19:125–130. doi: 10.1093/treephys/19.2.125 CrossRefPubMedGoogle Scholar
  29. Inagaki M, Kamo K, Titin J, Jamalung L, Lapongan J, Miura S (2010) Nutrient dynamics through fine litterfall in three plantations in Sabah, Malaysia, in relation to nutrient supply to surface soil. Nutr Cycl Agroecosystems 88:381–395. doi: 10.1007/s10705-010-9364-6 CrossRefGoogle Scholar
  30. Jenness J (2006) Topographic Position Index (tpi_jen.avx) extension for ArcView 3.x, v. 1.2.Jenness Enterprises. Available at:
  31. John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB (2007) Soil nutrients influence spatial distributions of tropical tree species. Proc Natl Acad Sci U S A 104:864–869. doi: 10.1073/pnas.0604666104 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Karunaratne SB, Bishop TF, Baldock J, Odeh IO (2014) Catchment scale mapping of measureable soil organic carbon fractions. Geoderma 219-220:14–23. doi: 10.1016/j.geoderma.2013.12.005 CrossRefGoogle Scholar
  33. Kelly CK (2008) Niche picking: the importance of being temporal. New Phytol 180:745–747. doi: 10.1111/j.1469-8137.2008.02670.x CrossRefPubMedGoogle Scholar
  34. Leff JW, Wieder WR, Taylor PG, Townsend AR, Nemergut DR, Grandy AS, Cleveland CC (2012) Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest. Glob Chang Biol 18:2969–2679. doi: 10.1111/j.1365-2486.2012.02749.x CrossRefPubMedGoogle Scholar
  35. Li H, Ma Y, Liu W, Liu W (2012) Soil changes induced by rubber and tea plantation establishment: comparison with tropical rain forest soil in Xishuangbanna, SW China. Environ Manage 50:837–848. doi: 10.1007/s00267-012-9942-2 CrossRefPubMedGoogle Scholar
  36. Mage SM, Porder S (2013) Parent material and topography determine soil phosphorus status in the Luquillo Mountains of Puerto Rico. Ecosystems 16:284–294. doi: 10.1007/s10021-012-9612-5 CrossRefGoogle Scholar
  37. McBratney A, Mendonça SM, Minasny B (2003) On digital soil mapping. Geoderma 117:3–52. doi: 10.1016/S0016-7061(03)00223-4 CrossRefGoogle Scholar
  38. McGrath D, Comerford N, Duryea M (2000) Litter dynamics and monthly fluctuations in soil phosphorus availability in an Amazonian agroforest. For Ecol Manage 131:167–181. doi: 10.1016/S0378-1127(99)00207-8 CrossRefGoogle Scholar
  39. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: community ecology packageGoogle Scholar
  40. Osorio F, Vallejos R (2014) SpatialPack: package for analysis of spatial dataGoogle Scholar
  41. Powers JS (2006) Spatial variation of soil organic carbon concentrations and stable isotopic composition in 1-ha plots of forest and pasture in Costa Rica: implications for the natural abundance technique. Biol Fertil Soils 42:580–584. doi: 10.1007/s00374-005-0054-5 CrossRefGoogle Scholar
  42. Prescott CE, Vesterdal L (2013) Tree species effects on soils in temperate and boreal forests: emerging themes and research needs. For Ecol Manage 309:1–3. doi: 10.1016/j.foreco.2013.06.042 CrossRefGoogle Scholar
  43. Development Core Term R (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  44. Reed S, Cleveland C, Townsend A (2008) Tree species control rates of free-living nitrogen fixation in a tropical rain forest. Ecology 89:2924–2934. doi: 10.1890/07-1430.1 CrossRefPubMedGoogle Scholar
  45. Ribeiro PJ Jr, Diggle PJ (2001) geoR: a package for geostatistical analysis. R-NEWS 1:15–18Google Scholar
  46. Rodríguez A, Durán J, Fernández-Palacios JM, Gallardo A (2009) Spatial variability of soil properties under Pinus canariensis canopy in two contrasting soil textures. Plant Soil 322:139–150. doi: 10.1007/s11104-009-9901-8 CrossRefGoogle Scholar
  47. Rossi RE, Mulla DJ, Journel AG, Franz EH (1992) Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecol Monogr 62:277–314. doi: 10.2307/2937096 CrossRefGoogle Scholar
  48. Ryel RJ, Caldwell MM, Manwaring JH (1996) Temporal dynamics of soil spatial heterogeneity in sagebrush-wheatgrass steppe during a growing season. Plant Soil 184:299–309. doi: 10.1007/BF00010459 CrossRefGoogle Scholar
  49. Sayer EJ, Joseph Wright S, Tanner EVJ, Yavitt JB, Harms KE, Powers JS, Kaspari M, Garcia MN, Turner BL (2012) Variable responses of lowland tropical forest nutrient status to fertilization and litter manipulation. Ecosystems 15:387–400. doi: 10.1007/s10021-011-9516-9 CrossRefGoogle Scholar
  50. Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602. doi: 10.1890/03-8002 CrossRefGoogle Scholar
  51. Silver WL, Lugo E, Keller M (1999) Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry 44:301–328. doi: 10.1007/BF00996995 Google Scholar
  52. Sparling GP, Ross DJ (1988) Microbial contributions to the increased nitrogen mineralization after air-drying of soils. Plant Soil 167:163–167. doi: 10.1007/BF02376779 CrossRefGoogle Scholar
  53. Tang J-W, Cao M, Zhang J-H, Li M-H (2010) Litterfall production, decomposition and nutrient use efficiency varies with tropical forest types in Xishuangbanna, SW China: a 10-year study. Plant Soil 335:271–288. doi: 10.1007/s11104-010-0414-2 CrossRefGoogle Scholar
  54. Tang Y, Kitching RL, Cao M (2011) Lianas as structural parasites: a re-evaluation. Chinese Sci Bull 57:307–312. doi: 10.1007/s11434-011-4690-x CrossRefGoogle Scholar
  55. Townsend AR, Asner GP, Cleveland CC (2008) The biogeochemical heterogeneity of tropical forests. Trends Ecol Evol 23:424–431. doi: 10.1016/j.tree.2008.04.009 CrossRefPubMedGoogle Scholar
  56. Tsui C-C, Chen Z-S, Hsieh C-F (2004) Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan. Geoderma 123:131–142. doi: 10.1016/j.geoderma.2004.01.031 CrossRefGoogle Scholar
  57. Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB (2012) Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol Monogr 82:205–220. doi: 10.1890/11-0416.1 CrossRefGoogle Scholar
  58. Vitousek PM, Sanford RL (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167. doi: 10.1146/ CrossRefGoogle Scholar
  59. Wang L, Mou PP, Huang J, Wang J (2007) Spatial heterogeneity of soil nitrogen in a subtropical forest in China. Plant Soil 295:137–150. doi: 10.1007/s11104-007-9271-z CrossRefGoogle Scholar
  60. Waring BG, Álvarez-Cansino L, Barry KE, Becklund KK, Dale S, Gei MG, Keller AB, Lopez OR, Markesteijn L, Mangan S, Riggs CE, Rodríguez-Ronderos ME, Segnitz RM, Schnitzer SA, Powers JS (2015) Pervasive and strong effects of plants on soil chemistry: a meta-analysis of individual plant “Zinke” effects. Proc R Soc B Biol Sci 282:20151001. doi: 10.1098/rspb.2015.1001 CrossRefGoogle Scholar
  61. Webster R (2000) Is soil variation random? Geoderma 97:149–163. doi: 10.1016/S0016-7061(00)00036-7 CrossRefGoogle Scholar
  62. Weintraub SR, Taylor PG, Porder S, Cleveland CC, Asner GP, Townsend AR (2015) Topographic controls on soil nitrogen availability in a lowland tropical forest. Ecology 96:1561–1574. doi: 10.1890/14-0834.1 CrossRefGoogle Scholar
  63. Wieder WR, Cleveland CC, Taylor PG, Nemergut DR, Hinckley E-L, Philippot L, Bru D, Weintraub SR, Martin M, Townsend AR (2012) Experimental removal and addition of leaf litter inputs reduces nitrate production and loss in a lowland tropical forest. Biogeochemistry 113:629–642. doi: 10.1007/s10533-012-9793-1 CrossRefGoogle Scholar
  64. Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397. doi: 10.2307/2389612 CrossRefGoogle Scholar
  65. Wright SJ (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:1–14. doi: 10.1007/s004420100809 CrossRefGoogle Scholar
  66. Xia S-W, Chen J, Schaefer D, Detto M (2015) Scale-dependent soil macronutrient heterogeneity reveals effects of litterfall in a tropical rainforest. Plant Soil 391:51–61. doi: 10.1007/s11104-015-2402-z CrossRefGoogle Scholar
  67. Zaady E, Groffman PM, Shachak M (1996) Litter as a regulator of N and C dynamics in macrophytic patches in Negev desert soils. Soil Biol Biochem 28:39–46. doi: 10.1016/0038-0717(95)00097-6 CrossRefGoogle Scholar
  68. Zhu H (2006) Forest vegetation of Xishuangbanna, south China. For Stud China 8:1–27. doi: 10.1007/s11632-006-0014-7 Google Scholar
  69. Ziadi N, Tran TS (2007) Mehlich 3-extractable elements. In: Carter MR, Gregorich EG (eds) Soil sampling and methods of analysis, Second Edi. CRC Press, Boca Raton, USA, pp 81–88Google Scholar
  70. Zinke P (1962) The pattern of influence of individual forest trees on soil properties. Ecology 43:130–133CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Shang-Wen Xia
    • 1
    • 2
  • Jin Chen
    • 1
  • Doug Schaefer
    • 1
  • Uromi Manage Goodale
    • 3
  1. 1.Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesXishuangbannaChina
  2. 2.Kunming College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, College of ForestryGuangxi UniversityNanningChina

Personalised recommendations