Plant and Soil

, Volume 404, Issue 1–2, pp 237–249 | Cite as

Pine wilt disease alters soil properties and root-associated fungal communities in Pinus tabulaeformis forest

  • Honglong Chu
  • Chunyan Wang
  • Haihua Wang
  • Hui Chen
  • Ming Tang
Regular Article



The objective was to elucidate how pine wilt disease impacts soil properties and root-associated fungi in Pinus tabulaeformis forest.


Soil responses to pine wilt disease were studied in three kinds of damaged (undisturbed, middle disturbed and high disturbed) stands. The responses of root-associated fungal community structure and diversity were examined through Illumina MiSeq sequencing of tagged amplicons of the 18S rDNA region. Soil nutrient properties were compared among stands using standard techniques.


Stands disturbed by pine wilt disease had lower soil hyphal density, pH, P and K content, higher organic matter and higher total N (P < 0.05) compared with undisturbed stands. With the increasing of disease damage, the root ergosterol content, the colonization rates of ectomycorrhizal fungi and total hyphae were significantly decreased (P < 0.05). Dark septate endopasitic fungi decreased firstly and then increased again with the increased severity of disease. The composition of root-associated fungi differed among three kinds of disturbed stands. Basidiomycota and Ascomycota were the dominant root-associated fungi of P. tabulaeformis. Tuber, as the most abundant fungal taxa, predominated in the undisturbed stand, while Russula in high disturbed stand. The community richness and diversity of root-associated fungi were significantly lower (P < 0.01) in high disturbed stand than that of undisturbed stand.


Pine wilt disease alters soil biotic and nutrient properties. Our study revealed clear differences in the biomass, abundance, diversity and community structure of root-associated fungi among three pure P. tabulaeformis stands. Analysis of dominated RAF abundance provides one of methods to predict the damage degree of pine wilt disease to some extent.


Pine wilt disease Root-associated fungi Fungal community Soil physichemical properties Pinus tabulaeformis 



This study was supported by the National Natural Science Foundation of China (31300543, 31270639, 31170567), the Fundamental Research Funds for the Central Universities (Z109021308), Research Foundation for Advanced Talents (Z111021204) of Northwest A&F University and Shaanxi province, Program for Changjiang Scholars and Innovative Research Team in University of China (IRT1035). We acknowledge doctor Michael Allen for his insightful comments.

Supplementary material

11104_2016_2845_MOESM1_ESM.doc (905 kb)
ESM 1 (DOC 905 kb)


  1. Akema T, Futai K (2005) Ectomycorrhizal development in a Pinus thunbergii stand in relation to location on a slope and effect on tree mortality from pine wilt disease. J Forest Res-JPN 10:93–99. doi: 10.1007/s10310-004-0101-3 CrossRefGoogle Scholar
  2. Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, Gaskins HR, Stumpf RM, Yildirim S, Torralba M (2013) Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J 7:1344–1353. doi: 10.1038/ismej.2013.16 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bence J, Nisbet R (1989) Space-limited recruitment in open systems: the importance of time delays. Ecology 70:1434–1441. doi: 10.2307/1938202 CrossRefGoogle Scholar
  4. Blackwell M (2011) The fungi: 1, 2, 3… 5.1 million species? Am J Bot 98:426–438. doi: 10.3732/ajb.1000298 CrossRefPubMedGoogle Scholar
  5. Blom JM, Vannini A, Vettraino AM, Hale MD, Godbold DL (2009) Ectomycorrhizal community structure in a healthy and a Phytophthora-infected chestnut (Castanea sativa mill.) stand in Central Italy. Mycorrhiza 20:25–38. doi: 10.1007/s00572-009-0256-z CrossRefPubMedGoogle Scholar
  6. Borneman J, Hartin RJ (2000) PCR primers that amplify fungal rRNA genes from environmental samples. Appl Environ Microbiol 66:4356–4360. doi: 10.1128/AEM.66.10.4356-4360.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Tumbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi: 10.1038/nmeth.f.303 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M (2012) Ultra-high-throughput microbial community analysis on the illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. doi: 10.1038/ismej.2012.8 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen K, Abbott RJ, Milne RI, Tian XM, Liu J (2008) Phylogeography of Pinus tabulaeformis carr.(pinaceae), a dominant species of coniferous forest in Northern China. Mol Ecol 17:4276–4288. doi: 10.1111/j.1365-294X.2008.03911.x CrossRefPubMedGoogle Scholar
  10. Cheng H, Lin M, Li W (1983) Pine wilt disease found on the Pinus thunbergii in Nanjing. For Pest Dis 4:1–5 in ChineseGoogle Scholar
  11. Corcobado T, Vivas M, Moreno G, Solla A (2014) Ectomycorrhizal symbiosis in declining and non-declining Quercus ilex trees infected with or free of Phytophthora cinnamomi. For Ecol Manag 324:72–80. doi: 10.1016/j.foreco.2014.03.040 CrossRefGoogle Scholar
  12. Dwinell L (1993) First report of pinewood nematode (Bursaphelenchus xylophilus) in Mexico. Plant Dis 77:846. doi: 10.1094/PD-77-0846A CrossRefGoogle Scholar
  13. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. doi: 10.1038/nmeth.2604 CrossRefPubMedGoogle Scholar
  14. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi: 10.1038/nmeth.2604 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fu HY, Ren JH, Huang L, Li H, Ye JR (2014) Screening and functional analysis of the peroxiredoxin specifically expressed in Bursaphelenchus xylophilus—the causative agent of pine wilt disease. Int J Mol Sci 15:10215–10232. doi: 10.3390/ijms150610215 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fujihara M (1996) Development of secondary pine forests after pine wilt disease in Western Japan. J Veg Sci 5:729–738CrossRefGoogle Scholar
  17. Garcia I, Mendoza R, Pomar MC (2012) Arbuscular mycorrhizal symbiosis and dark septate endophytes under contrasting grazing modes in the magellanic steppe of Tierra del Fuego. Agric Ecosyst Environ 155:194–201. doi: 10.1016/j.agee.2012.04.020 CrossRefGoogle Scholar
  18. Ge P, Da L, Wang W, Xu X (2014) Seasonal dynamics of dissolved organic carbon, nitrogen and other nutrients in soil of Pinus massoniana stands after pine wilt disease disturbance. J Soil Sci Plant Nut 14:75–87Google Scholar
  19. Gessner MO, Schmitt AL (1996) Use of solid-phase extraction to determine ergosterol concentrations in plant tissue colonized by fungi. Appl Environ Microbiol 62:415–419PubMedPubMedCentralGoogle Scholar
  20. Guan SY, Zhang D, Zhang Z (1986) Soil enzyme and its research methods. Agricultural, BeijingGoogle Scholar
  21. Hu G, Xu X, Wang Y, Lu G, Feeley KJ, Yu M (2012) Regeneration of different plant functional types in a Masson pine forest following pine wilt disease. PLoS One 7(5):e36432. doi: 10.1371/journal.pone.0036432 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ichihara Y, Fukuda K, Suzuki K (2001) Suppression of ectomycorrhizal development in young Pinus thunbergii trees inoculated with Bursaphelenchus xylophilus. For Pathol 31:141–147. doi: 10.1046/j.1439-0329.2001.00236.x Google Scholar
  23. Jakobsen I, Abbott L, Robson A (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. New Phytol 120:371–380. doi: 10.1111/j.1469-8137.1992.tb01077.x CrossRefGoogle Scholar
  24. Jennings SB, Brown ND, Sheil D (1999) Assessing forest canopies and understorey illumination: canopy closure, canopy cover and other measures. Forestry 72:59–74. doi: 10.1093/forestry/72.1.59 CrossRefGoogle Scholar
  25. Khastini RO, Ohta H, Narisawa K (2012) The role of a dark septate endophytic fungus, Veronaeopsis simplex Y34, in fusarium disease suppression in Chinese cabbage. J Microbiol 50:618–624. doi: 10.1007/s12275-012-2105-6 CrossRefPubMedGoogle Scholar
  26. Kikuchi J, Tsuno N, Futai K (1991) The effect of mycorrhizae as a resistance factor of pine trees (Pinus densiflora) to the pinewood nematode. J Jpn for Soc 73:216–218Google Scholar
  27. Kim C, Jang KS, Kim JB, Byun JK, Lee CH, Jeon KS (2010) Relationship between soil properties and incidence of pine wilt disease at stand level. Landsc Ecol Eng 6:119–124. doi: 10.1007/s11355-009-0087-2 CrossRefGoogle Scholar
  28. Kiyohara T, Tokushige Y (1971) Inoculation experiments of a nematode, Bursaphelenchus sp., onto pine trees. J Jpn for Soc 53:210–218Google Scholar
  29. Koele N, Hildebrand EE (2011) Differences in growth and nutrient uptake from a coarse-soil substrate by ectomycorrhizal-and fungicide-treated Picea abies seedlings. Eur J For Res 130:317–324. doi: 10.1007/s10342-010-0435-7 CrossRefGoogle Scholar
  30. Kwaśna H, Bateman G (2009) Microbial communities in roots of Pinus sylvestris seedlings with damping-off symptoms in two forest nurseries as determined by ITS1/2 rDNA sequencing. For Pathol 39:239–248. doi: 10.1111/j.1439-0329.2008.00583.x Google Scholar
  31. Liao C, Luo Y, Fang C, Chen J, Li B (2012) The effects of plantation practice on soil properties based on the comparison between natural and planted forests: a meta-analysis. Glob Ecol Biogeogr 21:318–327. doi: 10.1111/j.1466-8238.2011.00690.x CrossRefGoogle Scholar
  32. Lindahl BD, Tunlid A (2014) Ectomycorrhizal fungi-potential organic matter decomposers, yet not saprotrophs. New Phytol 205:1443–1447. doi: 10.1111/nph.13201 CrossRefPubMedGoogle Scholar
  33. Li LF, Yang AN, Zhang ZW (2005) Seasonality of arbuscular mycorrhizal symbiosis and dark septate endophytes in a grassland site in Southwest China. FEMS Microbiol Ecol 54:367–373. doi: 10.1016/j.femsec.2005.04.011 CrossRefGoogle Scholar
  34. Mabuhay JA, Nakagoshi N (2012) Response of soil microbial communities to changes in a forest ecosystem brought about by pine wilt disease. Landsc Ecol Eng 8:189–196. doi: 10.1007/s11355-011-0165-0 CrossRefGoogle Scholar
  35. Mandyam K, Jumpponen A (2008) Seasonal and temporal dynamics of arbuscular mycorrhizal and dark septate endophytic fungi in a tallgrass prairie ecosystem are minimally affected by nitrogen enrichment. Mycorrhiza 18:145–155. doi: 10.1007/s00572-008-0165-6 CrossRefPubMedGoogle Scholar
  36. Mandyam KG, Jumpponen A (2015) Mutualism-parasitism paradigm synthesized from results of root-endophyte models. Front Microbiol 5:776. doi: 10.3389/fmicb.2014.00776 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Mayerhofer MS, Kernaghan G, Harper KA (2013) The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza 23:119–128. doi: 10.1007/s00572-012-0456-9 CrossRefPubMedGoogle Scholar
  38. McGonigle T, Miller M, Evans D, Fairchild G, Swan J (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501. doi: 10.1111/j.1469-8137.1990.tb00476.x CrossRefGoogle Scholar
  39. Mota MM, Braasch H, Bravo MA, Penas AC, Burgermeister W, Metge K, Sousa E (1999) First report of Bursaphelenchus xylophilus in Portugal and in Europe. Nematology 1:727–734. doi: 10.1163/156854199508757 CrossRefGoogle Scholar
  40. Mota MM, Vieira P (2008) Pine wilt disease: a worldwide threat to forest ecosystems. Springer. doi: 10.1007/978-1-4020-8455-3 Google Scholar
  41. Nara K (2006) Pioneer dwarf willow may facilitate tree succession by providing late colonizers with compatible ectomycorrhizal fungi in a primary successional volcanic desert. New Phytol 171:187–198. doi: 10.1111/j.1469-8137.2006.01744.x CrossRefPubMedGoogle Scholar
  42. Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793. doi: 10.1111/j.1469-8137.2010.03611.x CrossRefPubMedGoogle Scholar
  43. Nickle WR, Golden AM, Mamiya Y, Wergin WP (1981) On the taxonomy and morphology of the pine wood nematode, Bursaphelenchus xylophilus (Steiner & Buhrer 1934) nickle 1970. J Nematol 13:385–392PubMedPubMedCentralGoogle Scholar
  44. Proença DN, Francisco R, Santos CV, Lopes A, Fonseca L, Abrantes IM, Morais PV (2010) Diversity of bacteria associated with Bursaphelenchus xylophilus and other nematodes isolated from Pinus pinaster trees with pine wilt disease. PLoS One 5(12):e15191. doi: 10.1371/journal.pone.0015191 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Reininger V, Sieber TN (2012) Mycorrhiza reduces adverse effects of dark septate endophytes (DSE) on growth of conifers. PLoS One 7:e42865. doi: 10.1371/journal.pone.0042865 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Robertson L, Cobacho Arcos S, Escuer M, Santiago Merino R, Esparrago G, Abelleira A, Navas A (2011) Incidence of the pinewood nematode Bursaphelenchus xylophlius Steiner & Buhrer, 1934 (nickle, 1970) in Spain. Nematology 13:755–757. doi: 10.1163/138855411X578888755 CrossRefGoogle Scholar
  47. Rossman AY, Tulloss RE, O’Dell TE, Thorn RG (1998) Protocols for an all taxa biodiversity inventory of fungi in a costa Rican conservation area. Parkway Publishers, Inc. doi: 10.1016/s0269-915x(99)80090-1 Google Scholar
  48. Ruotsalainen AL, Eskelinen A (2011) Root fungal symbionts interact with mammalian herbivory, soil nutrient availability and specific habitat conditions. Oecologia 166:807–817. doi: 10.1007/s00442-011-1928-x CrossRefPubMedGoogle Scholar
  49. Satomura T, Nakatsubo T, Horikoshi T (2003) Estimation of the biomass of fine roots and mycorrhizal fungi: a case study in a Japanese red pine (Pinus densiflora) stand. J Forest Res-JPN 8:221–225. doi: 10.1007/s10310-002-0023-x CrossRefGoogle Scholar
  50. Scattolin L, Dal Maso E, Mutto Accordi S, Sella L, Montecchio L (2012) Detecting asymptomatic ink-diseased chestnut trees by the composition of the ectomycorrhizal community. For Pathol 42:501–509. doi: 10.1111/j.1439-0329.2012.00784.x Google Scholar
  51. Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6:e27310. doi: 10.1371/journal.pone.0027310 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Schmidt SK, Sobieniak-Wiseman LC, Kageyama SA, Halloy S, Schadt CW (2008) Mycorrhizal and dark-septate fungi in plant roots above 4270 meters elevation in the Andes and Rocky Mountains. Arct Antarct Alp Res 40:576–583. doi: 10.2307/20181824 CrossRefGoogle Scholar
  53. Shi C, Wang C, Xu X, Huang B, Wu L, Yang D (2015) Comparison of bacterial communities in soil between nematode-infected and nematode-uninfected Pinus massoniana pinewood forest. Appl Soil Ecol 85:11–20. doi: 10.1016/j.apsoil.2014.08.008 CrossRefGoogle Scholar
  54. Shi J, Chen F, Luo YQ, Wang Z, Xie BY (2013) First isolation of pine wood nematode from Pinus tabuliformis forests in China. For Pathol 43:59–66. doi: 10.1111/j.1439-0329.2012.00793.x Google Scholar
  55. Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic Press, New YorkGoogle Scholar
  56. Southey JF (1986) Laboratory methods for work with plant and soil nematodes. HMSO Press, LondonGoogle Scholar
  57. Steiner G, Buhrer EM (1934) Aphelenchoides xylophilus n. sp., a nematode associated with blue-stain and other fungi in timber. J Agric Res 48:949–951Google Scholar
  58. Sun XG, Tang M (2012) Comparison of four routinely used methods for assessing root colonization by arbuscular mycorrhizal fungi. Botany 90:1073–1083. doi: 10.1139/b2012-084 CrossRefGoogle Scholar
  59. Tan KH (2005) Soil sampling, preparation, and analysis. CRC Press, Boca RatonGoogle Scholar
  60. Tang M, Zhang RQ, Chen H, Zhang HH, Tian ZQ (2008) Induced hydrolytic enzymes of ectomycorrhizal fungi against pathogen Rhizoctonia solani. Biotechnol Lett 30:1777–1782. doi: 10.1007/s10529-008-9760-z CrossRefPubMedGoogle Scholar
  61. Tennant D (1975) A test of a modified line intersect method of estimating root length. J Ecol 63:995–1001. doi: 10.2307/2258617 CrossRefGoogle Scholar
  62. Treu R, Karst J, Randall M, Pec GJ, Cigan PW, Simard SW, Cooke JE, Erbilgin N, Cahill JF (2014) Decline of ectomycorrhizal fungi following a mountain pine beetle epidemic. Ecology 95:1096–1103. doi: 10.1890/13-1233.1 CrossRefPubMedGoogle Scholar
  63. Ugawa S, Ichihara Y, Fukuda K, Suzuki K (2009) Ectomycorrhizae and ectomycorrhizal fungal fruit bodies in pine stands differentially damaged by pine wilt disease. Mycoscience 50:63–69. doi: 10.1007/s10267-008-0444-2 CrossRefGoogle Scholar
  64. Usuga JCL, Toro JAR, Alzate MVR, Tapias ÁDJL (2010) Estimation of biomass and carbon stocks in plants, soil and forest floor in different tropical forests. For Ecol Manag 260:1906–1913. doi: 10.1016/j.foreco2010.08.040 CrossRefGoogle Scholar
  65. van der Heijden MGA (2002) Arbuscular mycorrhizal fungi as a determinant of plant diversity: in search of underlying mechanisms and general principles. Springer, Berlin, Heidelberg. doi: 10.1007/978-3-540-38364-2_10 Google Scholar
  66. Vandenkoornhuyse P, Baldauf SL, Leyval C, Straczek J, Young JPW (2002) Extensive fungal diversity in plant roots. Science 295(5562):2051–2051. doi: 10.1126/science.295.5562.2051 CrossRefPubMedGoogle Scholar
  67. Vicente C, Espada M, Vieira P, Mota M (2012) Pine wilt disease: a threat to European forestry. Eur J Plant Pathol 133(1):89–99. doi: 10.1007/s10658-011-9924-x CrossRefGoogle Scholar
  68. Wagg C, Pautler M, Massicotte HB, Peterson RL (2008) The co-occurrence of ectomycorrhizal, arbuscular mycorrhizal, and dark septate fungi in seedlings of four members of the pinaceae. Mycorrhiza 18(2):103–110. doi: 10.1007/s00572-007-0157-y CrossRefPubMedGoogle Scholar
  69. Xu Z, Ward S, Chen C, Blumfield T, Prasolova N, Liu J (2008) Soil carbon and nutrient pools, microbial properties and gross nitrogen transformations in adjacent natural forest and hoop pine plantations of subtropical Australia. J Soils Sediments 8:99–105. doi: 10.1065/jss2008.02.276 CrossRefGoogle Scholar
  70. Yano M (1913) Investigation of the causes of pine mortality in Nagasaki Prefecture. Sanrin Koho 4 (Suppl.): l-14 in JapaneseGoogle Scholar
  71. Yi CK, Byun BH, Park JD, Yang S, Chang KH (1989) First finding of the pine wood nematode, Bursaphelenchus xylophilus (Steiner & Buhrer) Nickle and its insect vector in Korea. Research Reports of the Forestry Research Institute (Seoul):141–149Google Scholar
  72. Yu L, Nicolaisen M, Larsen J, Ravnskov S (2012) Succession of root-associated fungi in Pisum sativum during a plant growth cycle as examined by 454 pyrosequencing. Plant Soil 358:225–233. doi: 10.1007/s11104-012-1188-5 CrossRefGoogle Scholar
  73. Zhang HH, Tang M, Chen H, Wang YJ, Ban YH (2010) Arbuscular mycorrhizas and dark septate endophytes colonization status in medicinal plant Lycium barbarum l. in arid Northwestern China. Afr J Microbiol Res 4:1914–1920Google Scholar
  74. Zhang RQ, Tang M, Chen H, Tian ZQ (2011) Effects of ectomycorrhizal fungi on damping-off and induction of pathogenesis-related proteins in Pinus tabulaeformis seedlings inoculated with Amanita vaginata. For Pathol 41:262–269. doi: 10.1111/j.1439-0329.2010.00669.x Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Honglong Chu
    • 1
  • Chunyan Wang
    • 1
  • Haihua Wang
    • 1
  • Hui Chen
    • 1
  • Ming Tang
    • 1
  1. 1.College of ForestryNorthwest A&F UniversityYanglingChina

Personalised recommendations