Advertisement

Plant and Soil

, Volume 403, Issue 1–2, pp 77–101 | Cite as

Vegetation on ultramafic edaphic ‘islands’ in Kinabalu Park (Sabah, Malaysia) in relation to soil chemistry and elevation

  • Antony van der Ent
  • Peter Erskine
  • David Mulligan
  • Rimi Repin
  • Rositti Karim
Regular Article

Abstract

Background and aims

Kinabalu Park is the world’s most species-rich hotspot with over 5000 plant species recorded for an area 1200 km2. The aim of this study was to characterise the vegetation on ultramafic edaphic ‘islands’ in relation to soil chemistry and elevation.

Methods

In total 87 non-permanent vegetation plots were established covering 12 ultramafic edaphic ‘islands’ from 474 to 2950 m asl in which 2854 plant species in 742 genera and 188 families were recorded from 14 662 collections.

Results

The results show that plant diversity decreases with elevation, but a mid-elevation (circum 1500 m asl) ‘hump’ occurs for some plant groups (orchids, pteridophytes) as a result of the presence of cloud forests. Six main vegetation classes with associated soil types were discerned: (i) Sub-Alpine Scrub; and (ii) Graminoid Scrub, both associated with Hypermagnesic Cambisols (‘hypermagnesian soils’); (iii) Montane Cloud Forest, associated with Cambisols often with accumulation of humus; (iv) Mixed Dipterocarp Forest, associated with deep Ferralsols (‘laterites’); (v) Pioneer Casuarina Scrub; (vi) Mature Mixed Casuarina Forest, both associated with Hypermagnesic Leptosols.

Conclusions

We hypothesised that ‘adverse’ soil chemistry would exacerbate vegetation stunting, and the results confirmed that stunted vegetation and elevational floristic compression occurs on chemically adverse soils (mainly hypermagnesian soils). However, no clear correlation with plant diversity was found, as some of the most ‘adverse’ soils on the summit of Mount Tambuyukon had up to 132 species per 250 m2.

Keywords

Edaphic factor Floristic zonation Serpentinite Vegetation physiognomy 

Notes

Acknowledgments

We would like to express our gratitude to Sukaibin Sumail, Handry Mujih, Dolois Sumbin, Kinahim Sampang, Yabainus Juhalin and Alim Biun (Sabah Parks) for their help and expertise in the field and in the herbarium. We would also like to thank John Sugau (Sabah Forestry Department), Khoon Meng Wong (Singapore Herbarium) and Max van Balgooy (Leiden Herbarium) for their advise. We would like to gratefully acknowledge the continuous support of Sabah Parks and thank the SaBC for granting permission for conducting research in Sabah. Finally, we thank Mark Tibbett (University of Reading, UK) and three anonymous reviewers for constructive comments that have improved an earlier version of this manuscript. Antony van der Ent was the recipient of an IPRS scholarship in Australia.

Supplementary material

11104_2016_2831_MOESM1_ESM.docx (124 kb)
Supplementary Table 1 Bedrock chemistry of edaphic ‘islands’ (elemental concentrations in μg g−1 or % as indicated, as means and standard error of means). (DOCX 124 kb)
11104_2016_2831_MOESM2_ESM.docx (167 kb)
Supplementary Table 2 Soil chemistry of edaphic ‘islands’ (elemental concentrations in μg g−1, mg g−1, cmol(+) kg−1, or Wt% as means and standard error of means). Abbreviations: ‘total’ are elements after acid digest, ‘ML-3’ is Mehlich-3 extractable P, ‘Olsen’ is NaHCO3-extractable P, ‘DTPA’ are DTPA-extractable trace elements, and ‘exch.’ are major cations exchangeable with silver-thiorea. (DOCX 166 kb)
11104_2016_2831_MOESM3_ESM.docx (101 kb)
Supplementary Table 3 Leaf litter chemistry of edaphic ‘islands’ (elemental concentrations in μg g−1 as means and standard error of means). Results are from micro-wave assisted digestion with HNO3 and H2O2. (DOCX 101 kb)
11104_2016_2831_MOESM4_ESM.docx (102 kb)
Supplementary Table 4 Foliar chemistry of edaphic ‘islands’ (elemental concentrations in μg g−1 as means and standard error of means). Results are from micro-wave assisted digestion with HNO3 and H2O2. (DOCX 102 kb)
11104_2016_2831_MOESM5_ESM.docx (99 kb)
Supplementary Table 5 Pair-wise correlation of soil and foliar elemental concentrations (significant at p = <0.05 indicated in red) using 3 soil samples per plot (n = 297) and 4–6 foliar samples per plot (n = 562). (DOCX 98 kb)
11104_2016_2831_MOESM6_ESM.docx (156 kb)
Supplementary Table 6 Relative contributions of all plant species (presence/absence data) to vegetation classes (SIMPER-analysis). (DOCX 155 kb)
11104_2016_2831_MOESM7_ESM.docx (137 kb)
Supplementary Table 7 Relative contributions of tree plant species (quantitative data) to vegetation classes (SIMPER-analysis). (DOCX 136 kb)

References

  1. Aiba S, Kitayama K (1999) Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecol 140(2):139–157. doi: 10.1023/A:1009710618040 CrossRefGoogle Scholar
  2. Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161(2):105–121. doi: 10.1111/j.1095-8339.2009.00996.x CrossRefGoogle Scholar
  3. Ashton PS (1989) Species richness in tropical forests. In: Holm-Nielsen LB, Nielsen IC, Balslev H (eds) Tropical forests. Botanical dynamics, speciation and diversity. Academic, London, pp 239–251Google Scholar
  4. Ashton PS (2004) Dipterocarpaceae. In: Soepadmo E, Saw LG, Chung RCK (eds) Tree flora of Sabah and Sarawak, vol 5. Sabah Forestry Department, Forestry Research Institute, Sarawak Forestry Department, MalaysiaGoogle Scholar
  5. Ashton PS (2010) Conservation of Borneo biodiversity: do small lowland parks have a role, or are big inland sanctuaries sufficient? Brunei as an example. Biodivers Conserv 19(2):343–356. doi: 10.1007/s10531-009-9717-0 CrossRefGoogle Scholar
  6. Austin MP (1987) Models for the analysis of species’ response to environmental gradient. Vegetatio 69(1–3):35–45. doi: 10.1007/BF00038685 CrossRefGoogle Scholar
  7. Baillie IC, Evangelista PM, Inciong NB (2000) Differentiation of upland soils on the Palawan ophiolitic complex, Philippines. Catena 39:283–299. doi: 10.1016/S0341-8162(00)00078-3 CrossRefGoogle Scholar
  8. Balslev H, Valencia R, Pazy Mino G, Christensen H, Nielsen I (1998) Species count of vascular plants in one hectare of humid lowland forest in Amazonian Ecuador. In: Dallmeier F, Comiskey JA (eds) Forest biodiversity in North, Central and South America, and the Caribbean: research and monitoring. UNESCO, Paris, pp 585–594Google Scholar
  9. Beaman JH (2005) Mount Kinabalu: hotspot of plant diversity in Borneo. Biol Skr 55:103–127Google Scholar
  10. Beaman JH, Anderson C (2004) The Plants of Mount Kinabalu. 5. Dicotyledon families Magnoliaceae to Winteraceae. Kota Kinabalu: Natural History Publications (Borneo) Sdn. Bhd. Kew: Royal Botanic GardenGoogle Scholar
  11. Beaman JH, Beaman RS (1990) Diversity and distribution patterns in the flora of Mount Kinabalu. In: Baas P, Kalkman K, Geesink R (eds) The plant diversity of Malesia. Kluwer Academic Publishers, pp 147–160Google Scholar
  12. Beaman JH, Beaman RS (1998) The plants of Mount Kinabalu. 3. Gymnosperms and non-orchid monocotyledons, Kota Kinabalu. Natural History Publications (Borneo) Sdn. Bhd. Kew, Royal Botanic GardenGoogle Scholar
  13. Beaman JH, Anderson C, Beaman RS (2001) The plants of Mount Kinabalu, 4. Dicotyledon families: Acanthaceae to Lythraceae. Natural History Publications (Borneo) and Royal Botanic Gardens, KewGoogle Scholar
  14. Bordenave BG, De Granville JJ, Hoff M (1998) Measurement of species richness of vascular plants in a neotropical rain forest in French Guiana. In: Dallmeier F, Comiskey J (eds) Forest biodiversity, research, monitoring and modelling: conceptual background and Old World case studies. Man and the biosphere series, vol 20. UNESCO and Parthenon, ParisGoogle Scholar
  15. Brady KU, Kruckeberg AR, Bradshaw HD Jr (2005) Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol Syst 36:243–266. doi: 10.1146/annurev.ecolsys.35.021103.105730 CrossRefGoogle Scholar
  16. Brooks RR (1987) Serpentine and its vegetation: a multidisciplinary approach. Dioscorides Press, Portland, 462 ppGoogle Scholar
  17. Bruijnzeel LA, Waterloo M, Proctor J, Kuiters A, Kotterink B (1993) Hydrological observations in montane rain forests on Gunung Silam, Sabah, Malaysia with special reference to the ‘Massenerhebung’ effect. J Ecol 81:145–167. doi: 10.2307/2261231 CrossRefGoogle Scholar
  18. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth, 192 ppGoogle Scholar
  19. Dommergues YR, Diem HG, Sougoufara B (1990) Nitrogen fixation in Casuarinaceae: quantification and improvement. In: Advances in Casuarina research and utilization. Proceedings of the Second International Casuarina Workshop, Cairo, Egypt 110–121Google Scholar
  20. Duivenvoorden JF (1994) Vascular plant species counts in the rain forests of the middle Caqueta’ area, Colombian Amazonia. Biodivers Conserv 3:685–715. doi: 10.1007/BF00126860 CrossRefGoogle Scholar
  21. Grime JP (1979) Plant strategies and vegetation processes. Wiley, Chichester, 222 ppGoogle Scholar
  22. Grubb PJ (1971) Interpretation of the “Massenerhebung” effect on tropical mountains. Nature 229:44–45. doi: 10.1038/229044a0
  23. Grubb PJ (1977) Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annual Review of Ecology and Systematics 8:83–107. doi: 10.1146/annurev.es.08.110177.000503
  24. Grubb PJ, Whitmore TC (1966) A comparison of montane and lowland rain forest in Ecuador II. The climate and its effects on the distribution and physiognomy of the forests. J Ecol 54:303–333. doi: 10.2307/2257951 CrossRefGoogle Scholar
  25. Grytnes J-A, Beaman JH (2006) Elevational species richness patterns for vascular plants on Mount Kinabalu, Borneo. J Biogeogr 33(10):1838–1849. doi: 10.1111/j.1365-2699.2006.01554.x CrossRefGoogle Scholar
  26. Guillot S, Hattori K (2013) Serpentinites: essential roles in geodynamics, arc volcanism, sustainable development, and the origin of life. Elements 9(2):95–98. doi: 10.2113/gselements.9.2.95 CrossRefGoogle Scholar
  27. Harrison S, Inouye BD (2002) High β diversity in the flora of Californian serpentine ‘islands’. Biodivers Conserv 11:1869–1876. doi: 10.1023/A:1020357904064 CrossRefGoogle Scholar
  28. Harrison SP, Rajakaruna N (eds) (2011) Serpentine: the evolution and ecology of a model system. 2011. University of California Press, Berkeley, 464 ppGoogle Scholar
  29. IUSS Working Group WRB (2015) World reference base for soil resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, RomeGoogle Scholar
  30. Jaffré T (1980) Etude écologique du Peuplement Végétal Des Sols Dérivés de Roches Ultrabasiques en Nouvelle- Calédonie. Paris: ORSTOMGoogle Scholar
  31. Jenny H (1941) Factors of soil formation, a system of quantitative pedology. McGraw Hill, New York, 281 ppGoogle Scholar
  32. Jenny H (1980) The soil resource: origin and behavior. New York, Springer-Verlag. Ecological Studies 37:256–259. ISBN 978-1-4612-6112-4Google Scholar
  33. Kitayama K (1991) Vegetation of Mount Kinabalu Park, Sabah, Malaysia. Honolulu, Environment and Policy Institute, East-West Center and Department of Botany, University of Hawaii at ManoaGoogle Scholar
  34. Kitayama K (1992) An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. Vegetatio 102:149–171. doi: 10.1007/BF00044731 CrossRefGoogle Scholar
  35. Kitayama K, Aiba SI (2002) Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. J Ecol 90(1):37–51. doi: 10.1046/j.0022-0477.2001.00634.x CrossRefGoogle Scholar
  36. Kitayama K, Aiba SI, Majalap-Lee N, Ohsawa M (1998) Soil nitrogen mineralization rates of rainforests in a matrix of elevations and geological substrates on Mount Kinabalu, Borneo. Ecol Res 13(3):301–312. doi: 10.1046/j.1440-1703.1998.00264.x CrossRefGoogle Scholar
  37. Kruckeberg AR (1986) An essay: the stimulus of unusual geologies for plant speciation. Syst Bot 11:455–463. doi: 10.2307/2419082 CrossRefGoogle Scholar
  38. Kruckeberg AR (1991) An essay: geoedaphics and island biogeography for vascular plants. Aliso 13:225–238Google Scholar
  39. Langenberger G, Martin K, Sauerborn J (2006) Vascular plant species inventory of a Philippine lowland rain forest and its conservation value. Biodivers Conserv 15:1271–1301. doi: 10.1007/978-1-4020-5208-8_12 CrossRefGoogle Scholar
  40. Lee HS, Tan S, Davies SJ, La Frankie JV, Ashton PS, Yamakura T, Itoh A, Ohkubo T, Harrison R (2013) Lambir forest dynamics plot, Sarawak, Malaysia. Downloaded from: http://www.ctfs.si.edu/site/Lambir on 30 September 2013
  41. Magnussen S, Reed D (2015) Modeling for estimation and monitoring. In: Knowledge reference for national forest assessments. Accessed 27 October 2015: http://www.fao.org/forestry/8758/en/
  42. Meijer W (1959) Plantsociological analysis of montane rainforest near Tjibodas, West Java. Acta Bot Neerl 8:277–291. doi: 10.1111/j.1438-8677.1959.tb00540.x CrossRefGoogle Scholar
  43. O’Dell RE, Rajakaruna N (2011) Intraspecific variation, adaptation, and evolution. In: Harrison SP, Rajakaruna N (eds) Serpentine: the evolution and ecology of a model system. University of California Press, Berkeley and Los Angeles, pp 97–137Google Scholar
  44. Palmiotto PA, Davies SJ, Vogt KA, Ashton MS, Vogt DJ, Ashton PS (2008) Soil-related habitat specialization in dipterocarp rain forest tree species in Borneo. J Ecol 92(4):609–623. doi: 10.1111/j.0022-0477.2004.00894.x CrossRefGoogle Scholar
  45. Parris BS, Beaman RS, Beaman JH (1992) The plants of Mount Kinabalu: 1. ferns and fern allies. Royal Botanic Gardens, KewGoogle Scholar
  46. Pausas JG, Austin MP (2001) Patterns of plant species richness in relation to different environments: an appraisal. J Veg Sci 12(2):153–166. doi: 10.2307/3236601 CrossRefGoogle Scholar
  47. Pendry CA, Proctor J (1996) The causes of altitudinal zonation of rain forests on Bukit Belalong, Brunei. J Ecol 84:407–418. doi: 10.2307/2261202 CrossRefGoogle Scholar
  48. Proctor J (1999) Toxins, nutrient shortages and droughts: the serpentine challenge. Trends Ecol Evol 14(9):334–335. doi: 10.1016/S0169-5347(99)01698-5 CrossRefGoogle Scholar
  49. Proctor J (2003) Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspect Plant Ecol Evol Syst 6(1–2):105–124. doi: 10.1078/1433-8319-00045 CrossRefGoogle Scholar
  50. Proctor J, Lee YF, Langley AM, Munro W, Nelson T (1988) Ecological studies on Gunung Silam, a small ultrabasic mountain in Sabah, Malaysia. I. Environment, forest structure and floristics. J Ecol 76(2):320–340. doi: 10.2307/2260596 CrossRefGoogle Scholar
  51. Proctor J, Argent G, Madulid D (1998) Forests of the ultramafic mount Giting-Giting, Sibuyan Island, the Philippines. Edinb J Bot 55:295–316CrossRefGoogle Scholar
  52. Rajakaruna N (2004) The edaphic factor in the origin of plant species. Int Geol Rev 46:471–478. doi: 10.2747/0020-6814.46.5.471 CrossRefGoogle Scholar
  53. Rajakaruna N, Boyd RS (2008) Edaphic factor. Encycl Ecol 46:471–478. doi: 10.2747/0020-6814.46.5.471 Google Scholar
  54. Read J, Jaffre T, Ferris JM, et al (2006) Does soil determine the boundaries of monodominant rain forest with adjacent mixed rain forest and maquis on ultramafic soils in New Caledonia? Journal of Biogeography 33:1055–1065. doi: 10.1111/j.1365-2699.2006.01470.x
  55. Reed SC, Townsend AR, Taylor PG, Cleveland CC (2011) Phosphorus Cycling in Tropical Forests Growing on Highly Weathered Soils. In: Phosphorus in Action. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 339–369Google Scholar
  56. Repin R (1998) Serpentine ecology in Sabah, Malaysia. Sabah Parks J 1:19–28Google Scholar
  57. Sanchez PA (1976) Properties and management of soils in the tropics. Wiley, New YorkGoogle Scholar
  58. Šmilauer P, Lepš J (2014) Multivariate analysis of ecological data using Canoco 5, Cambridge University. ISBN: 9781107694408Google Scholar
  59. Van der Ent A, Mulligan DR (2015) Multi-element concentrations in plant parts and fluids of Malaysian nickel hyperaccumulator plants and some economic and ecological considerations. J Chem Ecol 41(4):396–408. doi: 10.1007/s10886-015-0573-y CrossRefPubMedGoogle Scholar
  60. Van der Ent A, Repin R, Sugau J, Wong KM (2014) The ultramafic flora of Sabah: an introduction to the plant diversity on ultramafic soils. Natural History Publications (Borneo). Kota Kinabalu, Malaysia. ISBN: 9789838121521Google Scholar
  61. Van der Ent A, Wong KM, Sugau J, Repin R (2015a) Plant diversity of ultramafic outcrops in Sabah (Malaysia). Aust J Bot 63:204–215. doi: 10.1071/BT14214 CrossRefGoogle Scholar
  62. Van der Ent A, Erskine PD, Sumail S (2015b) Ecology of nickel hyperaccumulator plants from ultramafic soils in Sabah (Malaysia). Chemoecology 25(5):243–259. doi: 10.1007/s00049-015-0192-7 CrossRefGoogle Scholar
  63. Vitousek PM, Sanford RL (1986) Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics 17:137–167. doi: 10.1146/annurev.es.17.110186.001033
  64. Whitmore TC, Peralta R, Brown K (1985) Total species count in a Costa Rican tropical rain forest. J Trop Ecol 1(4):375–378. doi: 10.1017/S0266467400000481 CrossRefGoogle Scholar
  65. Whittaker RH (1954a) The ecology of serpentine soils: I. Introduction. Ecology 35:258–259CrossRefGoogle Scholar
  66. Whittaker RH (1954b) The ecology of serpentine soils: IV. The vegetational response to serpentine soils. Ecology 35:275–288. doi: 10.2307/1931126 CrossRefGoogle Scholar
  67. Wilson JB, Peet RK, Dengler J, Pärtel M (2012) Plant species richness: the world records. J Veg Sci 23(4):796–802. doi: 10.1111/j.1654-1103.2012.01400.x CrossRefGoogle Scholar
  68. Wong KM, Phillipps A (eds) (1996) Kinabalu, summit of Borneo, revised and expandedth edn. Sabah Society, Kota Kinabalu, 544 ppGoogle Scholar
  69. Wood JJ, Beaman TE, Lamb A, Chan CL, Beaman JH (2011) The orchids of Mount Kinabalu. Natural History Publications (Borneo)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Centre for Mined Land Rehabilitation, Sustainable Minerals InstituteThe University of QueenslandSt LuciaAustralia
  2. 2.Laboratoire Sols et Environnement, UMR 1120Université de Lorraine – INRANancyFrance
  3. 3.Sabah ParksKota KinabaluMalaysia

Personalised recommendations